Commit 50c28cee authored by Dorchies David's avatar Dorchies David Committed by Dorchies David
Browse files

#22 Ajout du nub MacroRugo

Showing with 536 additions and 0 deletions
+536 -0
import { Nub } from "../nub";
import { ParamCalculability } from "../param/param-definition";
import { Result } from "../util/result";
import { MacrorugoParams } from "./macrorugo_params";
export class MacroRugo extends Nub {
/** Rugosité de fond (m) */
private ks: number;
/** Averaged velocity at the bed (m.s-1) */
private u0: number;
private _cache: { [key: string]: number }
static readonly g = 9.81;
/** nu: water kinematic viscosity */
static readonly nu = 1E-6;
// Water at 20 °C has a kinematic viscosity of about 10−6 m2·s−1 (https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity,_%CE%BD)
/** Ratio between the lenght (parallel to flow) and the width (perpendicular to flow) of a cell (-) */
static readonly frac_ay_ax = 1;
constructor(prms: MacrorugoParams, dbg: boolean = false) {
super(prms, dbg);
}
/**
* paramètres castés au bon type
*/
get prms(): MacrorugoParams {
return this._prms as MacrorugoParams;
}
public Equation(sVarCalc: string): Result {
const Q = uniroot(this.calcQ, 0, 1E7);
return new Result(Q);
}
/**
* Equation from Cassan, L., Laurens, P., 2016. Design of emergent and submerged rock-ramp fish passes. Knowledge & Management of Aquatic Ecosystems 45.
* @param sVarCalc Variable à calculer
*/
public calcQ(Q: number): number {
// Reset cached variables depending on Q (or not...)
this._cache = {};
/** Longueur (m) */
const L:number = this.prms.L.v;
/** Tirant d'eau (m) */
const h: number = this.prms.Y.v;
/** Paramètre de bloc : Forme (1 pour rond, 2 pour carré)
* drag coefficient of a block considering a single block
infinitely high with F ≪ 1;
*/
const Cd0: number = this.prms.Cd0.v;
/** Concentration de blocs (-) */
const C: number = this.prms.C.v;
/** Paramètre de bloc : Diamètre (m) */
const D: number = this.prms.PBD.v;
/** Paramètre de bloc : Hauteur (m) */
const k: number = this.prms.PBH.v;
/** Pente (m/m) */
const S:number = this.prms.If.v;
const g = MacroRugo.g;
const kappa = 0.41; // von Karman constant
/** Calulated average velocity */
let u: number;
if (h / k > 1.1) {
// Submerged conditions
/** Velocity at the bed §2.3.2 Cassan et al., 2016 */
this.u0 = Math.sqrt(2 * g * S * D * this.R / (Cd0 * C));
/** turbulent length scale (m) within the blocks layer (alpha_t) */
const alpha = uniroot(this.calcAlpha_t,0, 100);
/** averaged velocity at the top of blocks (m.s-1) */
const uk = this.calcUz(alpha);
/** Equation (13) Cassan et al., 2016 */
const d = k - 1 / kappa * alpha * uk / this.ustar;
/** Equation (14) Cassan et al., 2016 */
const z0 = (k - d) * Math.exp(- kappa * uk / this.ustar);
/** Integral of Equation (12) Cassan et al., 2016 */
const Qsup = this.ustar / kappa * ((h - d) * (Math.log((h - d) / z0) - 1) - ((k - d) * (Math.log((k - d) / z0) - 1)));
// calcul intégrale dans la canopée----
let Qinf: number = this.u0;
u = this.u0;
let u_old: number;
const step = 0.1;
for (let z = step; z <= 1; z += step) {
u_old = u;
u = this.calcUz(alpha, z);
Qinf += (u_old + u) / 2
}
Qinf = Qinf * step * k;
// Calcul de u moyen
u = (Qinf + Qsup) / k;
} else {
// Emergent conditions
// u0 = Averaged velocity at the bed (m.s-1)
this.u0 = Q / this.prms.L.v / this.prms.Y.v;
//
u = uniroot(this.calcU0, 0, 1E7)
}
return this.u0 - u;
}
private get CdChD(): number {
if( this._cache.CdChD !== undefined) {
return this._cache.CdChD;
}
return this.calcCd(1) * this.prms.C.v * this.prms.PBH.v / this.prms.PBD.v;
}
/**
* sigma ratio between the block area in the x, y plane and D2
*/
private get sigma(): number {
if (this._cache.sigma !== undefined) {
return this._cache.sigma;
}
if (this.prms.Cd0.v === 2) {
return 1
} else {
return Math.PI / 4;
}
}
private get R(): number {
if (this._cache.R !== undefined) {
return this._cache.R;
}
return (1 - this.sigma * this.prms.C.v) * Math.pow(1 - Math.sqrt(this.prms.C.v), 2);
}
/**
* Bed friction coefficient Equation (3) (Cassan et al., 2016)
*/
private get Cf(): number {
// Between Eq (8) and (9) (Cassan et al., 2016)
const Re = this.u0 * this.prms.Y.v / MacroRugo.nu
if (this.prms.Ks.v < 1E-6) {
return 0.3164/4.* Math.pow(Re, -0.25);
} else {
// Equation (3) (Cassan et al., 2016)
return 2 / Math.pow(5.1*Math.log10(this.prms.Y.v / this.prms.Ks.v - 1) + 6, 2);
}
}
/**
* paramétrage de la calculabilité des paramètres
*/
protected setParametersCalculability() {
this.prms.ZF1.calculability = ParamCalculability.FREE;
this.prms.L.calculability = ParamCalculability.FREE;
this.prms.Ks.calculability = ParamCalculability.FREE;
this.prms.B.calculability = ParamCalculability.DICHO;
this.prms.If.calculability = ParamCalculability.DICHO;
this.prms.Q.calculability = ParamCalculability.EQUATION;
this.prms.Y.calculability = ParamCalculability.DICHO;
this.prms.C.calculability = ParamCalculability.DICHO;
this.prms.PBD.calculability = ParamCalculability.FREE;
this.prms.PBH.calculability = ParamCalculability.FREE;
this.prms.Cd0.calculability = ParamCalculability.FREE;
}
/**
* Calculation of Cd : drag coefficient of a block under the actual flow conditions
* @param Cd0
* @param pf
* @param D
* @param fFr
*/
private calcCd(fFr: number): number {
return this.prms.Cd0.v * (1 + 0.4 / Math.pow(this.prms.Y.v / this.prms.PBD.v, 2)) * fFr;
}
/**
* Calcul de Beta force ratio between drag and turbulent stress (Cassan et al. 2016 eq(8))
* \Beta = (k / alpha_t) (C_d C k / D) / (1 - \sigma C)
* @param alpha \alpha_t turbulent length scale (m) within the blocks layer
*/
private calcBeta (alpha: number): number {
return Math.sqrt(this.prms.PBH.v * this.CdChD / alpha / this.R);
}
/**
* Averaged velocity at a given vertical position (m.s-1)
* @param alpha turbulent length scale (m) within the blocks layer
* @param z dimensionless vertical position z / k
*/
private calcUz(alpha: number, z: number = 1): number {
const beta = this.calcBeta(alpha);
// Equation (9) Cassan et al., 2016
return this.u0 * Math.sqrt(beta * (this.prms.Y.v / this.prms.PBH.v - 1) * Math.sinh(beta * z) / Math.cosh(beta) + 1)
}
private get ustar(): number {
if (this._cache.ustar !== undefined) {
return this._cache.ustar;
}
return Math.sqrt(MacroRugo.g * this.prms.If.v * (this.prms.Y.v - this.prms.PBH.v));
}
private calcAlpha_t(alpha: number):number {
/** s: minimum distance between blocks */
const s = this.prms.PBD.v * ( 1 / Math.sqrt(this.prms.C.v) - 1);
/** Equation(11) Cassan et al., 2016 */
const l0 = Math.min(s, 0.15 * this.prms.PBH.v);
// Equation(10) Cassan et al., 2016
return alpha * this.calcUz(alpha) - l0 * this.ustar;
}
private calcU0(U01: number, C: number, h: number, r: number, Cd0: number, D: number, cfmean: number, S: number, sigma: number) {
const g = MacroRugo.g;
const alpha = 1 - (1 * C);
const Cd = this.calcCd(this.calc_fFr(U01));
/** N from Cassan 2016 eq(2) et Cassan 2014 eq(12) */
const N = (alpha * this.Cf) / (h / D * Cd * C);
return U01 - Math.sqrt(2 * MacroRugo.g * this.prms.If.v * this.prms.PBD.v * (1 - this.sigma * this.prms.C.v) / (Cd * C * (1 + N)));
}
/**
* Froude correction function
* @param u0 Average velocity
*/
private calc_fFr(u0: number): number {
const Fr = u0 / (1 - Math.sqrt(MacroRugo.frac_ay_ax * this.prms.C.v)) / Math.sqrt(MacroRugo.g * this.prms.Y.v);
/** Interpolation linéaire entre le bloc rond (Cd0=1) et le carré (Cd0=2) */
const r = 0.4 * this.prms.Cd0.v + 0.7;
if (Fr < 1.3) {
return Math.pow(Math.min(r / (1 - Math.pow(Fr, 2) / 4), Math.pow(Fr,-2/3)), 2);
} else {
return Math.pow(Fr,-4/3);
}
}
}
/**
* Searches the interval from <tt>lowerLimit</tt> to <tt>upperLimit</tt>
* for a root (i.e., zero) of the function <tt>func</tt> with respect to
* its first argument using Brent's method root-finding algorithm.
*
* Translated from zeroin.c in http://www.netlib.org/c/brent.shar.
*
* Copyright (c) 2012 Borgar Thorsteinsson <borgar@borgar.net>
* MIT License, http://www.opensource.org/licenses/mit-license.php
*
* @param {function} func function for which the root is sought.
* @param {number} lowerlimit the lower point of the interval to be searched.
* @param {number} upperlimit the upper point of the interval to be searched.
* @param {number} errorTol the desired accuracy (convergence tolerance).
* @param {number} maxIter the maximum number of iterations.
* @returns an estimate for the root within accuracy.
*
*/
function uniroot(func: Function, lowerLimit: number, upperLimit: number,
errorTol: number = 0, maxIter: number = 1000
) {
let a = lowerLimit
, b = upperLimit
, c = a
, fa = func(a)
, fb = func(b)
, fc = fa
, s = 0
, fs = 0
, tol_act // Actual tolerance
, new_step // Step at this iteration
, prev_step // Distance from the last but one to the last approximation
, p // Interpolation step is calculated in the form p/q; division is delayed until the last moment
, q
;
while (maxIter-- > 0) {
prev_step = b - a;
if (Math.abs(fc) < Math.abs(fb)) {
// Swap data for b to be the best approximation
a = b, b = c, c = a;
fa = fb, fb = fc, fc = fa;
}
tol_act = 1e-15 * Math.abs(b) + errorTol / 2;
new_step = (c - b) / 2;
if (Math.abs(new_step) <= tol_act || fb === 0) {
return b; // Acceptable approx. is found
}
// Decide if the interpolation can be tried
if (Math.abs(prev_step) >= tol_act && Math.abs(fa) > Math.abs(fb)) {
// If prev_step was large enough and was in true direction, Interpolatiom may be tried
var t1, cb, t2;
cb = c - b;
if (a === c) { // If we have only two distinct points linear interpolation can only be applied
t1 = fb / fa;
p = cb * t1;
q = 1.0 - t1;
}
else { // Quadric inverse interpolation
q = fa / fc, t1 = fb / fc, t2 = fb / fa;
p = t2 * (cb * q * (q - t1) - (b - a) * (t1 - 1));
q = (q - 1) * (t1 - 1) * (t2 - 1);
}
if (p > 0) {
q = -q; // p was calculated with the opposite sign; make p positive
}
else {
p = -p; // and assign possible minus to q
}
if (p < (0.75 * cb * q - Math.abs(tol_act * q) / 2) &&
p < Math.abs(prev_step * q / 2)) {
// If (b + p / q) falls in [b,c] and isn't too large it is accepted
new_step = p / q;
}
// If p/q is too large then the bissection procedure can reduce [b,c] range to more extent
}
if (Math.abs(new_step) < tol_act) { // Adjust the step to be not less than tolerance
new_step = (new_step > 0) ? tol_act : -tol_act;
}
a = b, fa = fb; // Save the previous approx.
b += new_step, fb = func(b); // Do step to a new approxim.
if ((fb > 0 && fc > 0) || (fb < 0 && fc < 0)) {
c = a, fc = fa; // Adjust c for it to have a sign opposite to that of b
}
}
return undefined;
}
\ No newline at end of file
import { ParamDefinition } from "../param/param-definition";
import { ParamDomainValue } from "../param/param-domain";
import { ParamsEquation } from "../param/params-equation";
export class MacrorugoParams extends ParamsEquation {
/** Cote de fond amont (m) */
private _ZF1: ParamDefinition;
/** Longueur (m) */
private _L: ParamDefinition;
/** Largeur (m) */
private _B: ParamDefinition;
/** Pente (m/m) */
private _If: ParamDefinition;
/** Débit (m3/s) */
private _Q: ParamDefinition;
/** Tirant d'eau (m) */
private _Y: ParamDefinition;
/** Rugosité de fond (m) */
private _Ks: ParamDefinition;
/** Concentration de blocs (-) */
private _C: ParamDefinition;
/** Paramètre de bloc : Diamètre (m) */
private _PBD: ParamDefinition;
/** Paramètre de bloc : Hauteur (m) */
private _PBH: ParamDefinition;
/** Paramètre de bloc : Forme (1 pour rond, 2 pour carré) */
private _Cd0: ParamDefinition;
/**
*
* @param rZF1 Cote de fond amont (m)
* @param rL Longueur (m)
* @param rB Largeur (m)
* @param rIf Pente (m/m)
* @param rQ Débit (m3/s)
* @param rY Tirant d'eau (m)
* @param rRF Rugosité de fond (m)
* @param rCB Concentration de blocs (m)
* @param rPBD Paramètre de bloc : Diamètre (m)
* @param rPBH Paramètre de bloc : Hauteur (m)
* @param rCd0 Paramètre de bloc : Forme (1 pour rond, 2 pour carré)
*/
constructor(rZF1: number, rL: number, rB: number, rIf: number, rQ: number,
rY: number, rRF: number, rCB: number, rPBD: number, rPBH: number, rCd0: number) {
super();
this._ZF1 = new ParamDefinition("ZF1", ParamDomainValue.POS, rZF1);
this.addParamDefinition(this._ZF1);
this._L = new ParamDefinition("L", ParamDomainValue.POS, rL);
this.addParamDefinition(this._L);
this._B = new ParamDefinition("B", ParamDomainValue.POS, rB);
this.addParamDefinition(this._B);
this._If = new ParamDefinition("If", ParamDomainValue.POS, rIf);
this.addParamDefinition(this._If);
this._Q = new ParamDefinition("Q", ParamDomainValue.POS, rQ);
this.addParamDefinition(this._Q);
this._Y = new ParamDefinition("Y", ParamDomainValue.POS, rY);
this.addParamDefinition(this._Y);
this._Ks = new ParamDefinition("Ks", ParamDomainValue.POS, rRF);
this.addParamDefinition(this._Ks);
this._C = new ParamDefinition("C", ParamDomainValue.POS, rCB);
this.addParamDefinition(this._C);
this._PBD = new ParamDefinition("PBD", ParamDomainValue.POS, rPBD);
this.addParamDefinition(this._PBD);
this._PBH = new ParamDefinition("PBH", ParamDomainValue.POS, rPBH);
this.addParamDefinition(this._PBH);
this._Cd0 = new ParamDefinition("Cd0", ParamDomainValue.POS, rCd0);
this.addParamDefinition(this._Cd0);
}
/**
* Cote de fond amont (m)
* @return {ParamDefinition}
*/
public get ZF1(): ParamDefinition {
return this._ZF1;
}
/**
* Longueur (m)
* @return {ParamDefinition}
*/
public get L(): ParamDefinition {
return this._L;
}
/**
* Getter B
* @return {ParamDefinition}
*/
public get B(): ParamDefinition {
return this._B;
}
/**
* Pente (m/m)
* @return {ParamDefinition}
*/
public get If(): ParamDefinition {
return this._If;
}
/**
* Débit (m3/s)
* @return {ParamDefinition}
*/
public get Q(): ParamDefinition {
return this._Q;
}
/**
* Tirant d'eau (m)
* @return {ParamDefinition}
*/
public get Y(): ParamDefinition {
return this._Y;
}
/**
* Rugosité de fond (m)
* @return {ParamDefinition}
*/
public get Ks(): ParamDefinition {
return this._Ks;
}
/**
* Concentration de blocs (-)
* @return {ParamDefinition}
*/
public get C(): ParamDefinition {
return this._C;
}
/**
* Paramètre de bloc : Diamètre (m)
* @return {ParamDefinition}
*/
public get PBD(): ParamDefinition {
return this._PBD;
}
/**
* Paramètre de bloc : Hauteur (m)
* @return {ParamDefinition}
*/
public get PBH(): ParamDefinition {
return this._PBH;
}
/**
* Paramètre de bloc : Forme (1 pour rond, 2 pour carré)
* @return {ParamDefinition}
*/
public get Cd0(): ParamDefinition {
return this._Cd0;
}
}
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment