An error occurred while loading the file. Please try again.
-
Dorchies David authoredcc6a0e76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import matplotlib as mpl
import matplotlib.colorbar as cbar
import os.path as op
from collections import OrderedDict
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib import cm
from mpl_toolkits.axes_grid1 import AxesGrid, make_axes_locatable
from netCDF4 import Dataset
from extreme_estimator.gev.gevmle_fit import GevMleFit
from extreme_estimator.gev_params import GevParams
from safran_study.massif import safran_massif_names_from_datasets
from safran_study.shifted_color_map import shiftedColorMap
from safran_study.snowfall_annual_maxima import SafranSnowfall
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
from spatio_temporal_dataset.coordinates.spatial_coordinates.abstract_spatial_coordinates import \
AbstractSpatialCoordinates
from utils import get_full_path, cached_property
class Safran(object):
def __init__(self, safran_altitude=1800, nb_days_of_snowfall=1):
assert safran_altitude in [1800, 2400]
self.safran_altitude = safran_altitude
self.nb_days_of_snowfall = nb_days_of_snowfall
def write_to_file(self, df):
if not op.exists(self.result_full_path):
os.makedirs(self.result_full_path, exist_ok=True)
df.to_csv(op.join(self.result_full_path, 'merged_array_{}_altitude.csv'.format(self.safran_altitude)))
""" Visualization methods """
def visualize(self, ax=None, massif_name_to_fill_kwargs=None, show=True):
if ax is None:
ax = plt.gca()
df_massif = pd.read_csv(op.join(self.map_full_path, 'massifsalpes.csv'))
coord_tuples = [(row_massif['idx'], row_massif[AbstractCoordinates.COORDINATE_X],
row_massif[AbstractCoordinates.COORDINATE_Y])
for _, row_massif in df_massif.iterrows()]
for coordinate_id in set([tuple[0] for tuple in coord_tuples]):
l = [coords for idx, *coords in coord_tuples if idx == coordinate_id]
l = list(zip(*l))
ax.plot(*l, color='black')
massif_name = self.coordinate_id_to_massif_name[coordinate_id]
fill_kwargs = massif_name_to_fill_kwargs[massif_name] if massif_name_to_fill_kwargs is not None else {}
ax.fill(*l, **fill_kwargs)
ax.scatter(self.massifs_coordinates.x_coordinates, self.massifs_coordinates.y_coordinates)
ax.axis('off')
if show:
plt.show()
def visualize_gev_fit_with_cmap(self, show=True, axes=None):
params_names = GevParams.GEV_VALUE_NAMES
if axes is None:
fig, axes = plt.subplots(1, len(params_names))
fig.subplots_adjust(hspace=1.0, wspace=1.0)
for i, gev_param_name in enumerate(params_names):
ax = axes[i]
massif_name_to_value = self.df_gev_mle_each_massif.loc[gev_param_name, :].to_dict()
# Compute the middle point of the values for the color map
values = list(massif_name_to_value.values())
vmin, vmax = min(values), max(values)
midpoint = 1 - vmax / (vmax + abs(vmin))
maxmax = max(vmax, -vmin)
scaling_factor = 2 * maxmax
# print(gev_param_name, midpoint, vmin, vmax, scaling_factor)
# Load the shifted cmap to center on a middle point
cmap = [plt.cm.coolwarm, plt.cm.bwr, plt.cm.seismic][1]
if gev_param_name == GevParams.GEV_SHAPE:
shifted_cmap = shiftedColorMap(cmap, midpoint=midpoint, name='shifted')
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
else:
shifted_cmap = shiftedColorMap(cmap, midpoint=0.0, name='shifted')
norm = mpl.colors.Normalize(vmin=vmin-1, vmax=vmax)
m = cm.ScalarMappable(norm=norm, cmap=shifted_cmap)
massif_name_to_fill_kwargs = {massif_name: {'color': m.to_rgba(value)} for massif_name, value in
massif_name_to_value.items()}
self.visualize(ax=ax, massif_name_to_fill_kwargs=massif_name_to_fill_kwargs, show=False)
# Add colorbar
# plt.axis('off')
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
cb = cbar.ColorbarBase(cax, cmap=shifted_cmap, norm=norm)
cb.set_label(gev_param_name)
if show:
plt.show()
def visualize_cmap(self, massif_name_to_value):
orig_cmap = plt.cm.coolwarm
# shifted_cmap = shiftedColorMap(orig_cmap, midpoint=0.75, name='shifted')
massif_name_to_fill_kwargs = {massif_name: {'color': orig_cmap(value)} for massif_name, value in massif_name_to_value.items()}
self.visualize(massif_name_to_fill_kwargs=massif_name_to_fill_kwargs)
""" Statistics methods """
@property
def df_gev_mle_each_massif(self):
# Fit a gev n each massif
massif_to_gev_mle = {massif_name: GevMleFit(self.df_annual_maxima[massif_name]).gev_params.value_serie
for massif_name in self.safran_massif_names}
return pd.DataFrame(massif_to_gev_mle, columns=self.safran_massif_names)
""" Annual maxima of snowfall """
@property
def df_annual_maxima(self):
return pd.DataFrame(self.year_to_annual_maxima, index=self.safran_massif_names).T
""" Load some attributes only once """
@cached_property
def year_to_annual_maxima(self):
year_to_safran_snowfall = {year: SafranSnowfall(dataset) for year, dataset in
self.year_to_dataset_ordered_dict.items()}
year_to_annual_maxima = OrderedDict()
for year in self.year_to_dataset_ordered_dict.keys():
year_to_annual_maxima[year] = year_to_safran_snowfall[year].annual_maxima_of_snowfall(
self.nb_days_of_snowfall)
return year_to_annual_maxima
@property
def safran_massif_names(self):
# Load the names of the massif as defined by SAFRAN
return safran_massif_names_from_datasets(self.year_to_dataset_ordered_dict.values())
@property
def safran_massif_id_to_massif_name(self):
return dict(enumerate(self.safran_massif_names))
@cached_property
def year_to_dataset_ordered_dict(self) -> OrderedDict:
# Map each year to the correspond netCDF4 Dataset
year_to_dataset = OrderedDict()
nc_files = [(int(f.split('_')[1][:4]), f) for f in os.listdir(self.safran_full_path) if f.endswith('.nc')]
for year, nc_file in sorted(nc_files, key=lambda t: t[0]):
year_to_dataset[year] = Dataset(op.join(self.safran_full_path, nc_file))
return year_to_dataset
@cached_property
def massifs_coordinates(self) -> AbstractSpatialCoordinates:
# Coordinate object that represents the massif coordinates in Lambert extended
df_centroid = self.load_df_centroid()
for coord_column in [AbstractCoordinates.COORDINATE_X, AbstractCoordinates.COORDINATE_Y]:
df_centroid.loc[:, coord_column] = df_centroid[coord_column].str.replace(',', '.').astype(float)
# Build coordinate object from df_centroid
return AbstractSpatialCoordinates.from_df(df_centroid)
def load_df_centroid(self) -> pd.DataFrame:
df_centroid = pd.read_csv(op.join(self.map_full_path, 'coordonnees_massifs_alpes.csv'))
# Assert that the massif names are the same between SAFRAN and the coordinate file
assert not set(self.safran_massif_names).symmetric_difference(set(df_centroid['NOM']))
return df_centroid
@property
def coordinate_id_to_massif_name(self):
df_centroid = self.load_df_centroid()
return dict(zip(df_centroid['id'], df_centroid['NOM']))
""" Some properties """
@property
def relative_path(self) -> str:
return r'local/spatio_temporal_datasets'
@property
def full_path(self) -> str:
return get_full_path(relative_path=self.relative_path)
@property
def safran_full_path(self) -> str:
return op.join(self.full_path, 'safran-crocus_{}'.format(self.safran_altitude), 'Safran')
@property
def map_full_path(self) -> str:
return op.join(self.full_path, 'map')
@property
def result_full_path(self) -> str:
return op.join(self.full_path, 'results')