index.html 26.34 KiB
<!doctype html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
  <meta name="apple-mobile-web-app-capable" content="yes">
  <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
  <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
  <title>OTBTF, The Orfeo ToolBox extension for deep learning</title>
  <link rel="stylesheet" href="revealjs/dist/reset.css">
  <link rel="stylesheet" href="revealjs/dist/reveal.css">
  <link rel="stylesheet" href="a11y-light.css">
  <link rel="stylesheet" href="otb.css" id="theme">
  <style type="text/css">
    .reveal pre {
      width: 512px
    .slide-number {
      opacity:0
  </style>
</head>
<body>
  <div class="reveal">
    <div class="slides">
      <!------------------------------------------------------------------------
        PREMIER SLIDE
        ------------------------------------------------------------------------->
      <section data-background="illustrations/blank.png" background-size="contain">
        <h1> Status of OTBTF </h1>
        <h2> The Orfeo ToolBox extension for deep learning </h2>
        </br>
        <p> Rémi Cresson<sup>1</sup>, Nicolas Narçon<sup>1</sup>, Vincent Delbar<sup>2</sup></p>
        <small>(1) French National Research Institute for Agriculture, Food and the Environment (INRAE),
          <br>
           (2)
          LaTeleScop</small>
        <br>
        <br>
        <br>
        <br>
        <img width="30%" data-src="illustrations/foss4g_logo.png">
      </section>
      <!------------------------------------------------------------------------
        WHAT IS OTBTF
        ------------------------------------------------------------------------->
      <section>
        <section>
          <h1>What is OTBTF?</h1>
        </section>
        <section>
          <h2>In short</h2>
          <ul>
            <li><h>Generic</h> framework for deep learning on rasters</li>
            <li>Developped at INRAE for <h>research</h>, <h>education</h> and <h>production</h>
            </li>
            <li>Use <h>deep learning</h> techniques on geospatial images</li>
            <ul>
              <li>Create datasets (samples selection, patches extraction)</li>
              <li>Train models (CLI, Python)</li>
              <li>Apply models in OTB applications</li>
            </ul>
          </ul>
          <br>