Commit 84fc76a0 authored by Dino Ienco's avatar Dino Ienco
Browse files

first commit

parent 4c58eda1
No related merge requests found
Showing with 211 additions and 0 deletions
+211 -0
classify.py 0 → 100644
import numpy as np
import sys
import glob
from scipy import sparse
from gbssl import LGC,HMN,PARW,MAD,OMNIProp,CAMLP
from sklearn.neighbors import kneighbors_graph
from scipy.sparse import coo_matrix
from sklearn.preprocessing import normalize
from sklearn.utils import shuffle
from sklearn.metrics import accuracy_score
from scipy.spatial.distance import pdist
from scipy.spatial.distance import squareform
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import f1_score
import os.path
def extractKNNGraph(knn, k):
nrow, _ = knn.shape
G = sparse.lil_matrix((nrow,nrow))
for i in range(nrow):
for j in knn[i,1:k+1]:
G[i,j]=1
G_trans = G.transpose()
#MUTUAL KNN GRAPH
mKNN = np.minimum(G.todense(),G_trans.todense())
return sparse.lil_matrix(mKNN)
def getKNNEucl(X):
dist = pdist(X,'euclidean')
dist = squareform(dist)
knn = np.argsort(dist,axis=1)
return knn
def classify(directoy, embFileName, labelFileName, numberOfNearestNeighbors):
#Y = np.load(directory+"/class.npy")
X = np.load(embFileName)
scaler = MinMaxScaler()
scaler.fit(X)
X = scaler.transform(X)
knn = getKNNEucl(X)
G = extractKNNGraph(knn, numberOfNearestNeighbors)
nrow, _ = G.shape
#print directory+"/labels/"+str(runId)+"_"+str(nsamples)+".npy"
labeled = np.load( labelFileName )
id_labeled = labeled[:,0].astype("int")
cl_labeled = labeled[:,1].astype("int")
camlp = CAMLP(graph=G)
camlp.fit(np.array(id_labeled),np.array(cl_labeled))
prob_cl = camlp.predict_proba(np.arange(nrow))
predict = np.argmax(prob_cl,axis=1)
return predict
#Directory Name on which data are stored
directory = sys.argv[1]
#File that contains the new representation learned with the SESAM approach or any other data representation
embFileName = sys.argv[2]
#File in the directory/labels folder with label information
#The file has as many row as the number of labeled example
#Each row has two information: the position of the labeled example w.r.t. the data file data.npy, the associated label
labelFileName = sys.argv[3]
numberOfNearestNeighbors = 20
prediction = classify(directory, embFileName, labelFileName, numberOfNearestNeighbors)
print(prediction)
sesam.py 0 → 100644
from keras.layers import Input, Dense
from keras.models import Model
from keras import optimizers
from keras.callbacks import LearningRateScheduler
from keras.callbacks import EarlyStopping
import glob
from sklearn.preprocessing import MinMaxScaler
import keras
import scipy.io as sio
import numpy as np
import sys
import os
import random
from sklearn import preprocessing
from random import randint
#from cop_kmeans import cop_kmeans, l2_distance
import math
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
#config = tf.ConfigProto()
#config.gpu_options.per_process_gpu_memory_fraction = 0.5
#set_session(tf.Session(config=config))
def deepSSAEMulti(n_dim, n_hidden1, n_hidden2, n_classes):
input_layer = Input(shape=(n_dim,))
encoded = Dense(n_hidden1, activation='relu')(input_layer)
encoded = Dense(n_hidden2, activation='relu', name="low_dim_features")(encoded)
decoded = Dense(n_hidden1, activation='relu')(encoded)
decoded = Dense(n_dim, activation='sigmoid')(decoded)
classifier = Dense(n_classes, activation='softmax')(encoded)
rmsPropOpt = optimizers.RMSprop(lr=0.0005)
rmsPropOpt1 = optimizers.RMSprop(lr=0.0005)
autoencoder = Model(inputs=[input_layer], outputs=[decoded])
autoencoder.compile(optimizer=rmsPropOpt, loss=['mse'])
ssautoencoder = Model(inputs=[input_layer], outputs=[decoded, classifier])
ssautoencoder.compile(optimizer=rmsPropOpt1, loss=['mse','categorical_crossentropy'], loss_weights=[1., 1.])
return [autoencoder, ssautoencoder]
def feature_extraction(model, data, layer_name):
feat_extr = Model(inputs= model.input, outputs= model.get_layer(layer_name).output)
return feat_extr.predict(data)
def learn_SingleReprSS(X_tot, idx_train, Y):
n_classes = len(np.unique(Y))
idx_train = idx_train.astype("int")
X_train = X_tot[idx_train]
Y_train = Y[idx_train]
encoded_Y_train = keras.utils.to_categorical(Y_train, n_classes)
n_row, n_col = X_tot.shape
perc_50 = math.ceil( n_col -1)
perc_10 = math.ceil( n_col * 0.5)
perc_5 = math.ceil( (n_col * 0.5) - 1)
perc_1 = math.ceil( n_col * 0.25)
n_hidden1 = randint(perc_10, perc_50)
n_hidden2 = randint(perc_1, perc_5)
ae, ssae = deepSSAEMulti(n_col, n_hidden1, n_hidden2, n_classes)
for i in range(200):
print "epoch: %d" % i
ae.fit(X_tot, X_tot, epochs=1, batch_size=64, shuffle=True, verbose=1)
ssae.fit(X_train, [X_train, encoded_Y_train], epochs=1, batch_size=8, shuffle=True, verbose=1)
new_train_feat = feature_extraction(ae, X_tot, "low_dim_features")
return new_train_feat
def learn_representationSS(X_tot, idx_train, Y, ens_size):
intermediate_reprs = np.array([])
for l in range(ens_size):
embeddings = learn_SingleReprSS(X_tot, idx_train, Y)
if intermediate_reprs.size == 0:
intermediate_reprs = embeddings
else:
intermediate_reprs = np.column_stack((intermediate_reprs, embeddings))
return intermediate_reprs
def normData(data):
X = np.array(data)
scaler = MinMaxScaler()
scaler.fit(X)
return scaler.transform(X)
if __name__ == "__main__":
#Directory Name on which data are stored
directory = sys.argv[1]
#File in the directory/labels folder with label information
#The file has as many row as the number of labeled example
#Each row has two information: the position of the labeled example w.r.t. the data file data.npy, the associated label
fileName = sys.argv[2]
dataset_name = directory+"/data.npy"
dataset_cl_name = directory+"/class.npy"
dataset = np.load(dataset_name)
dataset = normData(dataset)
dataset_cl = np.load(dataset_cl_name)
#Size of the ensemble
ens_size = 30
dirEmb = "embeddings"
dir_path = directory+"/"+dirEmb
if not os.path.exists(dir_path):
os.makedirs(dir_path)
#for fileName in files:
fName = fileName.split("/")[-1]
run_id, nsamples = fName.split(".")[0].split("_")
outFileName = dir_path+"/"+run_id+"_"+nsamples+".npy"
if os.path.exists(outFileName):
print "ALREADY EXIST %s" % outFileName
exit()
print "CREATE EMBEDDINGS for the file %s" % fileName
sys.stdout.flush()
idx_cl = np.load(fileName)
idx_train = idx_cl[:,0]
new_feat_ssae = learn_representationSS(dataset, idx_train, dataset_cl, ens_size)
outFileName = dir_path+"/"+run_id+"_"+nsamples+".npy"
np.save(outFileName, new_feat_ssae)
File added
sonar/data.npy 0 → 100644
File added
File added
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment