An error occurred while loading the file. Please try again.
-
Le Roux Erwan authored36ea1de2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from typing import Dict, Union
import numpy as np
from extreme_fit.function.param_function.param_function import AbstractParamFunction
from extreme_fit.distribution.gev.gev_params import GevParams
from extreme_fit.function.margin_function.abstract_margin_function import \
AbstractMarginFunction
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
class IndependentMarginFunction(AbstractMarginFunction):
"""
IndependentMarginFunction: each parameter of the GEV are modeled independently
"""
def __init__(self, coordinates: AbstractCoordinates):
"""Attribute 'gev_param_name_to_param_function' maps each GEV parameter to its corresponding function"""
super().__init__(coordinates)
self.gev_param_name_to_param_function = None # type: Union[None, Dict[str, AbstractParamFunction]]
def get_gev_params(self, coordinate: np.ndarray, is_transformed: bool = True) -> GevParams:
"""Each GEV parameter is computed independently through its corresponding param_function"""
# Since all the coordinates are usually transformed by default
# then we assume that the input coordinate are transformed by default
assert self.gev_param_name_to_param_function is not None
assert len(self.gev_param_name_to_param_function) == 3
transformed_coordinate = coordinate if is_transformed else self.transform(coordinate)
gev_params = {}
for gev_param_name in GevParams.PARAM_NAMES:
param_function = self.gev_param_name_to_param_function[gev_param_name]
gev_params[gev_param_name] = param_function.get_param_value(transformed_coordinate)
return GevParams.from_dict(gev_params)
def transform(self, coordinate: np.ndarray) -> np.ndarray:
return self.coordinates.transformation.transform_array(coordinate)