RunModel_CemaNeigeGR5H.Rd 10.03 KiB
\encoding{UTF-8}
\name{RunModel_CemaNeigeGR5H}
\alias{RunModel_CemaNeigeGR5H}
\title{Run with the CemaNeigeGR4H hydrological model}
\usage{
RunModel_CemaNeigeGR5H(InputsModel, RunOptions, Param)
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 7 (or 9 parameters if \code{IsHyst = TRUE}, see \code{\link{CreateRunOptions}} for details)
\tabular{ll}{                                                                      
GR4H X1      \tab production store capacity [mm]                                          \cr
GR4H X2      \tab intercatchment exchange coefficient [mm/h]                              \cr
GR4H X3      \tab routing store capacity [mm]                                             \cr
GR4H X4      \tab unit hydrograph time constant [d]                                       \cr
GR5H X5      \tab intercatchment exchange threshold [-]                                   \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-]                   \cr
CemaNeige X2 \tab degree-hour melt coefficient [mm/°C/h]                                  \cr
CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE}) \cr
\value{
[list] list containing the function outputs organised as follows:                                         
  \tabular{ll}{                                                                                         
  \emph{$DatesR }          \tab [POSIXlt] series of dates                                                                        \cr
  \emph{$PotEvap}          \tab [numeric] series of input potential evapotranspiration [mm/h]                                    \cr
  \emph{$Precip }          \tab [numeric] series of input total precipitation [mm/h]                                             \cr
  \emph{Interc  }          \tab [numeric] series of interception store level [mm]                                                \cr
  \emph{$Prod   }          \tab [numeric] series of production store level [mm]                                                  \cr
  \emph{$Pn     }          \tab [numeric] series of net rainfall [mm/h]                         			                           \cr
  \emph{$Ps     }          \tab [numeric] series of the part of Pn filling the production store [mm/h]                           \cr
  \emph{$AE     }          \tab [numeric] series of actual evapotranspiration [mm/h]                                             \cr
  \emph{$EI     }          \tab [numeric] series of evapotranspiration from rainfall neutralisation or interception store [mm/h] \cr
  \emph{$ES     }          \tab [numeric] series of evapotranspiration from production store [mm/h]                              \cr  
  \emph{$Perc   }          \tab [numeric] series of percolation (PERC) [mm/h]                                                    \cr
  \emph{$PR     }          \tab [numeric] series of PR=Pn-Ps+Perc [mm/h]                                                         \cr
  \emph{$Q9     }          \tab [numeric] series of UH1 outflow (Q9) [mm/h]                                                      \cr
  \emph{$Q1     }          \tab [numeric] series of UH2 outflow (Q1) [mm/h]                                                      \cr
  \emph{$Rout   }          \tab [numeric] series of routing store level [mm]                                                     \cr
  \emph{$Exch   }          \tab [numeric] series of potential semi-exchange between catchments [mm/h]                            \cr
  \emph{$AExch1 }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/h]                       \cr
  \emph{$AExch2 }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/h]                       \cr
  \emph{$AExch  }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/h]                              \cr
  \emph{$QR     }          \tab [numeric] series of routing store outflow (QR) [mm/h]                                            \cr
  \emph{$QD     }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/h]                              \cr
  \emph{$Qsim   }          \tab [numeric] series of simulated discharge [mm/h]                                                   \cr
  \emph{$CemaNeigeLayers}  \tab [list] list of CemaNeige outputs (1 list per layer)                                              \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Pliq        } \tab [numeric] series of liquid precip. [mm/h]                                  \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Psol        } \tab [numeric] series of solid precip. [mm/h]                                   \cr
  \emph{$CemaNeigeLayers[[iLayer]]$SnowPack    } \tab [numeric] series of snow pack [mm]                                         \cr
  \emph{$CemaNeigeLayers[[iLayer]]$ThermalState} \tab [numeric] series of snow pack thermal state [°C]                           \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Gratio      } \tab [numeric] series of Gratio [0-1]                                           \cr
  \emph{$CemaNeigeLayers[[iLayer]]$PotMelt     } \tab [numeric] series of potential snow melt [mm/h]                             \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Melt        } \tab [numeric] series of actual snow melt [mm/h]                                \cr
  \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/h]               \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Temp        } \tab [numeric] series of air temperature [°C]                                   \cr     
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr } (refer to the provided references or to the package source code for further details on these model outputs) } \description{ Function which performs a single run for the CemaNeige-GR4H daily lumped model over the test period. } \details{ The choice of the CemaNeige version is explained in \code{\link{CreateRunOptions}}. \cr For further details on the model, see the references section. \cr For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. } \examples{ \dontrun{ library(airGR) ## loading catchment data data(U2345030) ## preparation of the InputsModel object InputsModel <- CreateInputsModel(FUN_MOD = RunModel_CemaNeigeGR5H, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, TempMean = BasinObs$T, ZInputs = BasinInfo$ZInputs, HypsoData = BasinInfo$HypsoData, NLayers = 5) ## run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d \%H:\%M")=="2004-03-01 00:00"), which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d \%H:\%M")=="2008-12-31 23:00")) ## ---- original version of CemaNeige ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR5H, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) ## simulation Param <- c(X1 = 149.905, X2 = -0.487, X3 = 391.506, X4 = 9.620, X5 = 99.99, CNX1 = 0.520, CNX2 = 0.133) OutputsModel <- RunModel_CemaNeigeGR5H(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run]) OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) } } \author{ Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Vazken Andréassian, Olivier Delaigue, Guillaume Thirel } \references{ Perrin, C., C. Michel and V. Andréassian (2003). Improvement of a parsimonious model for streamflow simulation.
141142143144145146147148149150151152153154155156157158159160161162163164165166
Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. \cr\cr Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019). Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. Journal of Hydrology and Hydromechanics. doi:10.2478/johh-2018-0004, 67, 1, 70–81. \cr\cr Valéry, A., V. Andréassian and C. Perrin (2014). "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? Part 1 - Comparison of six snow accounting routines on 380 catchments. Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.059. \cr\cr Valéry, A., V. Andréassian and C. Perrin (2014). "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.058. } \seealso{ \code{\link{RunModel_CemaNeige}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5H}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}, \code{\link{Imax}}. }