-
Le Roux Erwan authoredb097f9da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#
#
#
# if __name__ == '__main__':
# # Parameters
# scenarios = []
# nb_obs_list = []
# nb_fit = 1000
#
# # Load the object that will handle the simulation
# simu = Simulations(nb_fit, scenarios, nb_obs_list)
#
# # Fit many estimators to this simulation
# estimator_types = []
# for estimator_type in estimator_types:
# simu.fit(estimator_type)
#
# # Comparison of the diverse estimator
#
# # Compare all the estimator on a global graph (one graph per scenario)
# # On each graph the X axis should be the number of obs
# # the Y graph should the error
# simu.visualize_mean_test_error_graph(estimator_types, scenarios, nb_obs_list)
# # the other possible view, is to have one graph per number of observations
# # on the X axis should the name of the different estimator
# # on the y axis their error
#
#
# # Plot the same graph for the train/test error
# # For a single scenario, and a single obs (we give a plot detailing all the estimation steps that enabled to get
# # the result)
# simu.visualize_comparison_graph(estimator_types, scenario, nb_obs)
#
# # Analyse the result of a single estimator
#
# # Or all the result could be recorded in a matrix, with scenario as line, and nb_observaitons as columns
# # with the mean value (and the std in parenthesis)
# # (on the border on this matrix we should have the mean value)
# # for example, the first columns should be the mean of the other column for the same line
# simu.visualize_mean_test_error_matrix(estimator_type, scenarios, nb_obs_list)
#
#
# #
# simu.visualize
#
#
#