An error occurred while loading the file. Please try again.
-
Le Roux Erwan authoreddfc269ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from typing import Dict
import matplotlib.pyplot as plt
import numpy as np
from extreme_data.eurocode_data.utils import EUROCODE_ALTITUDES
from projects.exceeding_snow_loads.utils import dpi_paper1_figure
from extreme_trend.visualizers.study_visualizer_for_non_stationary_trends import \
StudyVisualizerForNonStationaryTrends
from extreme_fit.model.result_from_model_fit.result_from_extremes.confidence_interval_method import ci_method_to_color, \
ci_method_to_label, ConfidenceIntervalMethodFromExtremes
from root_utils import get_display_name_from_object_type
def plot_uncertainty_histogram(altitude_to_visualizer: Dict[int, StudyVisualizerForNonStationaryTrends]):
""" Plot one graph for each non-stationary context
:return:
"""
altitude_to_visualizer = {a: v for a, v in altitude_to_visualizer.items() if a in EUROCODE_ALTITUDES}
visualizer = list(altitude_to_visualizer.values())[0]
for model_subset_for_uncertainty in visualizer.model_subsets_for_uncertainty:
plot_histogram(altitude_to_visualizer, model_subset_for_uncertainty)
def plot_histogram(altitude_to_visualizer, model_subset_for_uncertainty):
"""
Plot a single graph for potentially several confidence interval method
:param altitude_to_visualizer:
:param model_subset_for_uncertainty:
:return:
"""
visualizers = list(altitude_to_visualizer.values())
visualizer = visualizers[0]
ax = plt.gca()
altitudes = np.array(list(altitude_to_visualizer.keys()))
bincenters = altitudes
fontsize_label = 15
legend_size = 15
# Plot histogram
for j, ci_method in enumerate(visualizer.uncertainty_methods):
if len(visualizer.uncertainty_methods) == 2:
offset = -50 if j == 0 else 50
bincenters = altitudes + offset
width = 100
else:
width = 200
plot_histogram_ci_method(visualizers, model_subset_for_uncertainty, ci_method, ax, bincenters, width=width)
ax.set_xticks(altitudes)
ax.tick_params(labelsize=fontsize_label)
if not (len(visualizer.uncertainty_methods) == 1
and visualizer.uncertainty_methods[0] == ConfidenceIntervalMethodFromExtremes.ci_mle):
ax.legend(loc='upper left', prop={'size': legend_size})
# ax.set_ylabel('Massifs whose 50-year return level\n'
# 'exceeds French standards (\%)', fontsize=fontsize_label)
ax.set_ylabel('Massifs exceeding French standards (\%)', fontsize=fontsize_label)
ax.set_xlabel('Altitude (m)', fontsize=fontsize_label)
ax.set_ylim([0, 100])
ax.yaxis.grid()
ax_twiny = ax.twiny()
ax_twiny.plot(altitudes, [0 for _ in altitudes], linewidth=0)
ax_twiny.tick_params(labelsize=fontsize_label)
ax_twiny.set_xlim(ax.get_xlim())
ax_twiny.set_xticks(altitudes)
nb_massif_names = [len(v.massif_names_fitted) for v in altitude_to_visualizer.values()]
ax_twiny.set_xticklabels(nb_massif_names)
ax_twiny.set_xlabel('Total number of massifs at each altitude (for the percentage)', fontsize=fontsize_label)
ax.set_yticks([10 * i for i in range(11)])
visualizer.plot_name = 'Percentages of exceedance with {}'.format(
get_display_name_from_object_type(model_subset_for_uncertainty))
# visualizer.show = True
visualizer.show_or_save_to_file(no_title=True, dpi=dpi_paper1_figure)
ax.clear()
ax_twiny.clear()
plt.close()
def plot_histogram_ci_method(visualizers, model_subset_for_uncertainty, ci_method, ax, bincenters, width):
three_percentages_of_excess = [v.excess_metrics(ci_method, model_subset_for_uncertainty)[:3] for v in
visualizers]
epsilon = 0.5
three_percentages_of_excess = [(a, b, c) if a == b else (max(epsilon, a), b, c) for (a, b, c) in
three_percentages_of_excess]
three_percentages_of_excess = [(a, b, c) if b == c else (a, b, min(100 - epsilon, c)) for (a, b, c) in
three_percentages_of_excess]
y = [d[1] for d in three_percentages_of_excess]
yerr = np.array([[d[1] - d[0], d[2] - d[1]] for d in three_percentages_of_excess]).transpose()
label = ci_method_to_label[ci_method]
color = ci_method_to_color[ci_method]
ax.bar(bincenters, y, width=width, color=color, yerr=yerr, label=label, ecolor='black', capsize=5)