Commit 2c05724b authored by Le Roux Erwan's avatar Le Roux Erwan
Browse files

[projection snowfall] add evgam call for...

[projection snowfall] add evgam call for abstract_temporal_linear_margin_model.py. account for log_scale in the margin_function. rename get_coord_df to get_r_dataframe_from_python_dataframe. create evgam_fixed.R for debugging
parent 02158c83
No related merge requests found
Showing with 269 additions and 33 deletions
+269 -33
# Title : TODO
# Objective : TODO
# Created by: erwan
# Created on: 30/03/2021
source('evgam_fixed.R')
library(evgam)
data(COprcp)
COprcp$year <- format(COprcp$date, "%Y")
COprcp_gev <- aggregate(prcp ~ year + meta_row, COprcp, max)
COprcp_gev <- cbind(COprcp_gev, COprcp_meta[COprcp_gev$meta_row,])
# print(COprcp_gev)
print('before call')
fmla_gev2 <- list(prcp ~ s(elev, bs="cr"), ~ s(lon, fx=FALSE, k=20), ~ 1)
m_gev2 <- evgam_fixed(fmla_gev2, data=COprcp_gev, family="gev")
# m_gev2 <- evgam(fmla_gev2, data=COprcp_gev, family="gev")
# summary(m_gev2)
# print(attributes(m_gev2))
print('good finish')
# Title : TODO
# Objective : TODO
# Created by: erwan
# Created on: 01/04/2021
library(evgam)
attach(loadNamespace("evgam"), name = "evgam_all")
evgam_fixed <- function(formula, data, family = "gev", correctV = TRUE, rho0 = 0, inits = NULL, outer = "bfgs", control = NULL, removeData = FALSE, trace = 0, knots = NULL, maxdata = 1e+20, maxspline = 1e+20, compact = FALSE, ald.args = list(), exi.args = list(), pp.args = list(), sandwich.args = list()) {
family.info <- .setup.family(family, pp.args)
if (is.null(family.info$lik.fns$d340)) outer <- "fd"
formula <- .setup.formulae(formula, family.info$npar, family.info$npar2, data, trace)
response.name <- attr(formula, "response.name")
temp.data <- .setup.data(data, response.name, formula, family, family.info$nms, removeData, exi.args, ald.args, pp.args, knots, maxdata, maxspline, compact, sandwich.args, tolower(outer), trace)
data <- temp.data$data
beta <- .setup.inner.inits(inits, temp.data$lik.data, family.info$lik.fns, family.info$npar, family)
lik.data <- .sandwich(temp.data$lik.data, beta)
if (trace > 0 & lik.data$adjust > 0) cat(paste("\n Sandwich correct lambda =", signif(lik.data$k, 3), "\n"))
smooths <- length(temp.data$gotsmooth) > 0
if (smooths) {
S.data <- .joinSmooth(temp.data$gams)
nsp <- length(attr(S.data, "Sl"))
if (is.null(rho0)) {
diagSl <- sapply(attr(S.data, "Sl"), diag)
rho0 <- apply(diagSl, 2, function(y) uniroot(.guess, c(-100, 100), d = attr(beta, "diagH"), s = y)$root)
} else {
if (length(rho0) == 1) rho0 <- rep(rho0, nsp)
}
lik.data$S <- .makeS(S.data, exp(rho0))
fit.reml <- .outer(rho0, beta, family.info$lik.fns, lik.data, S.data, control, correctV, lik.data$outer, trace)
sp <- exp(fit.reml$par)
lik.data$S <- .makeS(S.data, sp)
} else {
S.data <- NULL
fit.reml <- .outer.nosmooth(beta, family.info$lik.fns, lik.data, control, trace)
}
VpVc <- .VpVc(fit.reml, family.info$lik.fns, lik.data, S.data, correctV = correctV, sandwich = temp.data$sandwich, smooths = smooths, trace = trace)
edf <- .edf(fit.reml$beta, family.info$lik.fns, lik.data, VpVc, temp.data$sandwich)
names(temp.data$gams) <- family.info$nms
gams <- .swap(fit.reml, temp.data$gams, lik.data, VpVc, temp.data$gotsmooth, edf, smooths)
gams <- .finalise(gams, data, family.info$lik.fns, lik.data, S.data, fit.reml, VpVc, family, temp.data$gotsmooth, formula, response.name, removeData, edf)
return(gams)
}
...@@ -17,16 +17,16 @@ x_gev <- rgev(N, loc = loc, scale = scale, shape = shape) ...@@ -17,16 +17,16 @@ x_gev <- rgev(N, loc = loc, scale = scale, shape = shape)
# N <- 50 # N <- 50
# loc = 0; scale = 1; shape <- 0.1 # loc = 0; scale = 1; shape <- 0.1
# x_gev <- rgev(N, loc = loc, scale = scale, shape = shape) # x_gev <- rgev(N, loc = loc, scale = scale, shape = shape)
coord <- matrix(ncol=3, nrow = N) coord <- matrix(ncol=1, nrow = N)
coord[,1]=seq(0,N-1,1) coord[,1]=seq(0,N-1,1)
coord[,2]=c(rep(0, N/2), rep(1, N/2)) # coord[,2]=c(rep(0, N/2), rep(1, N/2))
coord[,3]=c(rep(1, N/2), rep(0, N/2)) # coord[,3]=c(rep(1, N/2), rep(0, N/2))
colnames(coord) = c("T", "G1", "G2") colnames(coord) = c("T")
print(coord) print(coord)
coord = data.frame(coord, stringsAsFactors = TRUE) coord = data.frame(coord, stringsAsFactors = TRUE)
# res = fevd_fixed(x_gev, data=coord, method='MLE', verbose=TRUE, use.phi=FALSE) # res = fevd_fixed(x_gev, data=coord, method='MLE', verbose=TRUE, use.phi=FALSE)
# res = fevd_fixed(x_gev, data=coord, location.fun= ~T, scale.fun= ~T, method='MLE', type="GEV", verbose=FALSE, use.phi=FALSE) res = fevd_fixed(x_gev, data=coord, location.fun= ~T, scale.fun= ~T, method='MLE', type="GEV", verbose=FALSE, use.phi=FALSE)
res = fevd_fixed(x_gev, data=coord, shape.fun= ~1 + (G1-G2) + I(G2), method='MLE', type="GEV", verbose=FALSE, use.phi=FALSE) # res = fevd_fixed(x_gev, data=coord, shape.fun= ~1 + (G1-G2) + I(G2), method='MLE', type="GEV", verbose=FALSE, use.phi=FALSE)
print(res) print(res)
# Some display for the results # Some display for the results
......
...@@ -5,14 +5,17 @@ from extreme_fit.model.margin_model.linear_margin_model.linear_margin_model impo ...@@ -5,14 +5,17 @@ from extreme_fit.model.margin_model.linear_margin_model.linear_margin_model impo
from extreme_fit.function.margin_function.linear_margin_function import LinearMarginFunction from extreme_fit.function.margin_function.linear_margin_function import LinearMarginFunction
def load_margin_function(estimator: AbstractEstimator, margin_model: LinearMarginModel, coef_dict=None): def load_margin_function(estimator: AbstractEstimator, margin_model: LinearMarginModel, coef_dict=None, log_scale=None):
if coef_dict is None: if coef_dict is None:
coef_dict = estimator.result_from_model_fit.margin_coef_ordered_dict coef_dict = estimator.result_from_model_fit.margin_coef_ordered_dict
if log_scale is None:
log_scale = estimator.result_from_model_fit.log_scale
margin_function_class = type(margin_model.margin_function) margin_function_class = type(margin_model.margin_function)
return margin_function_class.from_coef_dict(coordinates=estimator.dataset.coordinates, return margin_function_class.from_coef_dict(coordinates=estimator.dataset.coordinates,
param_name_to_dims=margin_model.param_name_to_list_for_result, param_name_to_dims=margin_model.param_name_to_list_for_result,
coef_dict=coef_dict, coef_dict=coef_dict,
starting_point=margin_model.starting_point) starting_point=margin_model.starting_point,
log_scale=log_scale)
...@@ -20,8 +20,9 @@ class AbstractMarginFunction(AbstractFunction): ...@@ -20,8 +20,9 @@ class AbstractMarginFunction(AbstractFunction):
VISUALIZATION_RESOLUTION = 100 VISUALIZATION_RESOLUTION = 100
VISUALIZATION_TEMPORAL_STEPS = 2 VISUALIZATION_TEMPORAL_STEPS = 2
def __init__(self, coordinates: AbstractCoordinates, params_class: type = GevParams): def __init__(self, coordinates: AbstractCoordinates, params_class: type = GevParams, log_scale=None):
super().__init__(coordinates) super().__init__(coordinates)
self.log_scale = log_scale
self.params_class = params_class self.params_class = params_class
self.mask_2D = None self.mask_2D = None
......
...@@ -14,9 +14,9 @@ class IndependentMarginFunction(AbstractMarginFunction): ...@@ -14,9 +14,9 @@ class IndependentMarginFunction(AbstractMarginFunction):
IndependentMarginFunction: each parameter of the GEV are modeled independently IndependentMarginFunction: each parameter of the GEV are modeled independently
""" """
def __init__(self, coordinates: AbstractCoordinates, params_class: type = GevParams): def __init__(self, coordinates: AbstractCoordinates, params_class: type = GevParams, log_scale=None):
"""Attribute 'param_name_to_param_function' maps each GEV parameter to its corresponding function""" """Attribute 'param_name_to_param_function' maps each GEV parameter to its corresponding function"""
super().__init__(coordinates, params_class) super().__init__(coordinates, params_class, log_scale)
self.param_name_to_param_function = None # type: Union[None, Dict[str, AbstractParamFunction]] self.param_name_to_param_function = None # type: Union[None, Dict[str, AbstractParamFunction]]
def get_params(self, coordinate: np.ndarray, is_transformed: bool = True) -> GevParams: def get_params(self, coordinate: np.ndarray, is_transformed: bool = True) -> GevParams:
...@@ -28,6 +28,8 @@ class IndependentMarginFunction(AbstractMarginFunction): ...@@ -28,6 +28,8 @@ class IndependentMarginFunction(AbstractMarginFunction):
transformed_coordinate = coordinate if is_transformed else self.transform(coordinate) transformed_coordinate = coordinate if is_transformed else self.transform(coordinate)
params = {param_name: param_function.get_param_value(transformed_coordinate) params = {param_name: param_function.get_param_value(transformed_coordinate)
for param_name, param_function in self.param_name_to_param_function.items()} for param_name, param_function in self.param_name_to_param_function.items()}
if self.log_scale:
params[GevParams.SCALE] = np.exp(params[GevParams.SCALE])
return self.params_class.from_dict(params) return self.params_class.from_dict(params)
def get_first_derivative_param(self, coordinate: np.ndarray, is_transformed: bool, dim: int = 0): def get_first_derivative_param(self, coordinate: np.ndarray, is_transformed: bool, dim: int = 0):
......
...@@ -28,11 +28,9 @@ class LinearMarginFunction(ParametricMarginFunction): ...@@ -28,11 +28,9 @@ class LinearMarginFunction(ParametricMarginFunction):
COEF_CLASS = LinearCoef COEF_CLASS = LinearCoef
def __init__(self, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]], def __init__(self, *args, **kwargs):
param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None,
params_class: type = GevParams):
self.param_name_to_coef = None # type: Union[None, Dict[str, LinearCoef]] self.param_name_to_coef = None # type: Union[None, Dict[str, LinearCoef]]
super().__init__(coordinates, param_name_to_dims, param_name_to_coef, starting_point, params_class) super().__init__(*args, **kwargs)
def load_specific_param_function(self, param_name) -> AbstractParamFunction: def load_specific_param_function(self, param_name) -> AbstractParamFunction:
return LinearParamFunction(dims=self.param_name_to_dims[param_name], return LinearParamFunction(dims=self.param_name_to_dims[param_name],
......
...@@ -32,10 +32,11 @@ class ParametricMarginFunction(IndependentMarginFunction): ...@@ -32,10 +32,11 @@ class ParametricMarginFunction(IndependentMarginFunction):
def __init__(self, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]], def __init__(self, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]],
param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None, param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None,
params_class: type = GevParams): params_class: type = GevParams,
log_scale=None):
# Starting point for the trend is the same for all the parameters # Starting point for the trend is the same for all the parameters
self.starting_point = starting_point self.starting_point = starting_point
super().__init__(coordinates, params_class) super().__init__(coordinates, params_class, log_scale=log_scale)
self.param_name_to_dims = param_name_to_dims # type: Dict[str, List[int]] self.param_name_to_dims = param_name_to_dims # type: Dict[str, List[int]]
# Check the dimension are well-defined with respect to the coordinates # Check the dimension are well-defined with respect to the coordinates
...@@ -89,7 +90,8 @@ class ParametricMarginFunction(IndependentMarginFunction): ...@@ -89,7 +90,8 @@ class ParametricMarginFunction(IndependentMarginFunction):
@classmethod @classmethod
def from_coef_dict(cls, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]], def from_coef_dict(cls, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]],
coef_dict: Dict[str, float], starting_point: Union[None, int] = None): coef_dict: Dict[str, float], starting_point: Union[None, int] = None,
log_scale=None):
assert cls.COEF_CLASS is not None, 'a COEF_CLASS class attributes needs to be defined' assert cls.COEF_CLASS is not None, 'a COEF_CLASS class attributes needs to be defined'
param_name_to_coef = {} param_name_to_coef = {}
for param_name in GevParams.PARAM_NAMES: for param_name in GevParams.PARAM_NAMES:
...@@ -97,7 +99,7 @@ class ParametricMarginFunction(IndependentMarginFunction): ...@@ -97,7 +99,7 @@ class ParametricMarginFunction(IndependentMarginFunction):
coef = cls.COEF_CLASS.from_coef_dict(coef_dict=coef_dict, param_name=param_name, dims=dims, coef = cls.COEF_CLASS.from_coef_dict(coef_dict=coef_dict, param_name=param_name, dims=dims,
coordinates=coordinates) coordinates=coordinates)
param_name_to_coef[param_name] = coef param_name_to_coef[param_name] = coef
return cls(coordinates, param_name_to_dims, param_name_to_coef, starting_point) return cls(coordinates, param_name_to_dims, param_name_to_coef, starting_point=starting_point, log_scale=log_scale)
@property @property
def form_dict(self) -> Dict[str, str]: def form_dict(self) -> Dict[str, str]:
......
...@@ -14,13 +14,13 @@ class PolynomialMarginFunction(LinearMarginFunction): ...@@ -14,13 +14,13 @@ class PolynomialMarginFunction(LinearMarginFunction):
def __init__(self, coordinates: AbstractCoordinates, param_name_to_dim_and_max_degree: Dict[str, List[Tuple[int, int]]], def __init__(self, coordinates: AbstractCoordinates, param_name_to_dim_and_max_degree: Dict[str, List[Tuple[int, int]]],
param_name_to_coef: Dict[str, PolynomialAllCoef], starting_point: Union[None, int] = None, param_name_to_coef: Dict[str, PolynomialAllCoef], starting_point: Union[None, int] = None,
params_class: type = GevParams): params_class: type = GevParams, log_scale=None):
param_name_to_dims = {} param_name_to_dims = {}
for param_name in param_name_to_dim_and_max_degree.keys(): for param_name in param_name_to_dim_and_max_degree.keys():
dims = [c[0] for c in param_name_to_dim_and_max_degree[param_name]] dims = [c[0] for c in param_name_to_dim_and_max_degree[param_name]]
param_name_to_dims[param_name] = dims param_name_to_dims[param_name] = dims
self.param_name_to_dim_and_max_degree = param_name_to_dim_and_max_degree self.param_name_to_dim_and_max_degree = param_name_to_dim_and_max_degree
super().__init__(coordinates, param_name_to_dims, param_name_to_coef, starting_point, params_class) super().__init__(coordinates, param_name_to_dims, param_name_to_coef, starting_point, params_class, log_scale)
COEF_CLASS = PolynomialAllCoef COEF_CLASS = PolynomialAllCoef
...@@ -33,7 +33,7 @@ class PolynomialMarginFunction(LinearMarginFunction): ...@@ -33,7 +33,7 @@ class PolynomialMarginFunction(LinearMarginFunction):
@classmethod @classmethod
def from_coef_dict(cls, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[Tuple[int, int]]], def from_coef_dict(cls, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[Tuple[int, int]]],
coef_dict: Dict[str, float], starting_point: Union[None, int] = None): coef_dict: Dict[str, float], starting_point: Union[None, int] = None, log_scale=None):
param_name_to_dim_and_max_degree = param_name_to_dims param_name_to_dim_and_max_degree = param_name_to_dims
assert cls.COEF_CLASS is not None, 'a COEF_CLASS class attributes needs to be defined' assert cls.COEF_CLASS is not None, 'a COEF_CLASS class attributes needs to be defined'
param_name_to_coef = {} param_name_to_coef = {}
...@@ -43,5 +43,5 @@ class PolynomialMarginFunction(LinearMarginFunction): ...@@ -43,5 +43,5 @@ class PolynomialMarginFunction(LinearMarginFunction):
dims=dims, dims=dims,
coordinates=coordinates) coordinates=coordinates)
param_name_to_coef[param_name] = coef param_name_to_coef[param_name] = coef
return cls(coordinates, param_name_to_dim_and_max_degree, param_name_to_coef, starting_point) return cls(coordinates, param_name_to_dim_and_max_degree, param_name_to_coef, starting_point, log_scale=log_scale)
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from rpy2 import robjects
from extreme_fit.distribution.exp_params import ExpParams from extreme_fit.distribution.exp_params import ExpParams
from extreme_fit.distribution.gev.gev_params import GevParams from extreme_fit.distribution.gev.gev_params import GevParams
...@@ -9,9 +10,10 @@ from extreme_fit.model.margin_model.utils import MarginFitMethod, fitmethod_to_s ...@@ -9,9 +10,10 @@ from extreme_fit.model.margin_model.utils import MarginFitMethod, fitmethod_to_s
from extreme_fit.model.result_from_model_fit.abstract_result_from_model_fit import AbstractResultFromModelFit from extreme_fit.model.result_from_model_fit.abstract_result_from_model_fit import AbstractResultFromModelFit
from extreme_fit.model.result_from_model_fit.result_from_extremes.result_from_bayesian_extremes import \ from extreme_fit.model.result_from_model_fit.result_from_extremes.result_from_bayesian_extremes import \
AbstractResultFromExtremes, ResultFromBayesianExtremes AbstractResultFromExtremes, ResultFromBayesianExtremes
from extreme_fit.model.result_from_model_fit.result_from_extremes.result_from_evgam import ResultFromEvgam
from extreme_fit.model.result_from_model_fit.result_from_extremes.result_from_mle_extremes import ResultFromMleExtremes from extreme_fit.model.result_from_model_fit.result_from_extremes.result_from_mle_extremes import ResultFromMleExtremes
from extreme_fit.model.result_from_model_fit.result_from_ismev import ResultFromIsmev from extreme_fit.model.result_from_model_fit.result_from_ismev import ResultFromIsmev
from extreme_fit.model.utils import r, ro, get_null, get_margin_formula_extremes, get_coord_df from extreme_fit.model.utils import r, ro, get_null, get_margin_formula_extremes, get_r_dataframe_from_python_dataframe
from extreme_fit.model.utils import safe_run_r_estimator from extreme_fit.model.utils import safe_run_r_estimator
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
...@@ -46,6 +48,8 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel): ...@@ -46,6 +48,8 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel):
return self.ismev_gev_fit(x, df_coordinates_temp) return self.ismev_gev_fit(x, df_coordinates_temp)
elif self.fit_method in FEVD_MARGIN_FIT_METHODS: elif self.fit_method in FEVD_MARGIN_FIT_METHODS:
return self.extremes_fevd_fit(x, df_coordinates_temp, df_coordinates_spat) return self.extremes_fevd_fit(x, df_coordinates_temp, df_coordinates_spat)
elif self.fit_method is MarginFitMethod.evgam:
return self.extremes_evgam_fit(x, df_coordinates_temp, df_coordinates_spat)
else: else:
raise NotImplementedError raise NotImplementedError
elif self.params_class is ExpParams: elif self.params_class is ExpParams:
...@@ -62,6 +66,26 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel): ...@@ -62,6 +66,26 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel):
sigl=self.sigl, shl=self.shl) sigl=self.sigl, shl=self.shl)
return ResultFromIsmev(res, self.param_name_to_list_for_result) return ResultFromIsmev(res, self.param_name_to_list_for_result)
# Gev fit with evgam
def extremes_evgam_fit(self, x, df_coordinates_temp, df_coordinates_spat) -> AbstractResultFromExtremes:
margin_formula = get_margin_formula_extremes(self.margin_function.form_dict, transformed_as_formula=False)
maxima_column_name = 'Maxima'
formula_list = [maxima_column_name + " " + v if i == 0 else v for i, v in enumerate(margin_formula.values())]
formula = r.list(*[robjects.Formula(f) for f in formula_list])
df = pd.DataFrame({maxima_column_name: np.array(x)})
df = pd.concat([df, df_coordinates_spat, df_coordinates_temp], axis=1)
data = get_r_dataframe_from_python_dataframe(df)
res = safe_run_r_estimator(function=r('evgam'),
formula=formula,
data=data,
family=self.type_for_mle.lower(),
maxdata=1e10,
)
return ResultFromEvgam(res, self.param_name_to_list_for_result,
self.coordinates.dim_to_coordinate,
type_for_mle=self.type_for_mle)
# Gev fit with extRemes package # Gev fit with extRemes package
def extremes_fevd_fit(self, x, df_coordinates_temp, df_coordinates_spat) -> AbstractResultFromExtremes: def extremes_fevd_fit(self, x, df_coordinates_temp, df_coordinates_spat) -> AbstractResultFromExtremes:
...@@ -118,7 +142,7 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel): ...@@ -118,7 +142,7 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel):
df = df_coordinates_temp df = df_coordinates_temp
else: else:
df = pd.concat([df_coordinates_spat, df_coordinates_temp], axis=1) df = pd.concat([df_coordinates_spat, df_coordinates_temp], axis=1)
y = get_coord_df(df) y = get_r_dataframe_from_python_dataframe(df)
# Disable the use of log sigma parametrization # Disable the use of log sigma parametrization
r_type_argument_kwargs = {'use.phi': False, r_type_argument_kwargs = {'use.phi': False,
......
...@@ -8,6 +8,7 @@ class MarginFitMethod(Enum): ...@@ -8,6 +8,7 @@ class MarginFitMethod(Enum):
extremes_fevd_gmle = 3 extremes_fevd_gmle = 3
extremes_fevd_l_moments = 4 extremes_fevd_l_moments = 4
spatial_extremes_mle = 5 spatial_extremes_mle = 5
evgam = 6
FEVD_MARGIN_FIT_METHOD_TO_ARGUMENT_STR = { FEVD_MARGIN_FIT_METHOD_TO_ARGUMENT_STR = {
......
...@@ -3,7 +3,7 @@ from rpy2 import robjects ...@@ -3,7 +3,7 @@ from rpy2 import robjects
from extreme_fit.model.abstract_model import AbstractModel from extreme_fit.model.abstract_model import AbstractModel
from extreme_fit.model.result_from_model_fit.result_from_quantilreg import ResultFromQuantreg from extreme_fit.model.result_from_model_fit.result_from_quantilreg import ResultFromQuantreg
from extreme_fit.model.utils import r, safe_run_r_estimator, get_coord_df from extreme_fit.model.utils import r, safe_run_r_estimator, get_r_dataframe_from_python_dataframe
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
from spatio_temporal_dataset.dataset.abstract_dataset import AbstractDataset from spatio_temporal_dataset.dataset.abstract_dataset import AbstractDataset
...@@ -16,7 +16,7 @@ class AbstractQuantileRegressionModel(AbstractModel): ...@@ -16,7 +16,7 @@ class AbstractQuantileRegressionModel(AbstractModel):
@property @property
def data(self): def data(self):
return get_coord_df(self.dataset.df_dataset) return get_r_dataframe_from_python_dataframe(self.dataset.df_dataset)
@property @property
def first_column_of_observation(self): def first_column_of_observation(self):
......
...@@ -32,6 +32,11 @@ class AbstractResultFromModelFit(object): ...@@ -32,6 +32,11 @@ class AbstractResultFromModelFit(object):
def all_parameters(self): def all_parameters(self):
raise NotImplementedError raise NotImplementedError
@property
def log_scale(self):
# todo: refactor, put raise NotImplementError, and fix the subfunctions for the other Result objects
return None
@property @property
def margin_coef_ordered_dict(self): def margin_coef_ordered_dict(self):
raise NotImplementedError raise NotImplementedError
......
import numpy as np
from rpy2 import robjects
from extreme_fit.model.result_from_model_fit.result_from_extremes.abstract_result_from_extremes import \
AbstractResultFromExtremes
from extreme_fit.model.result_from_model_fit.result_from_extremes.confidence_interval_method import \
ci_method_to_method_name
from extreme_fit.model.result_from_model_fit.utils import get_margin_coef_ordered_dict
from extreme_fit.model.utils import r
class ResultFromEvgam(AbstractResultFromExtremes):
def __init__(self, result_from_fit: robjects.ListVector, param_name_to_dim=None,
dim_to_coordinate=None,
type_for_mle="GEV") -> None:
super().__init__(result_from_fit, param_name_to_dim, dim_to_coordinate)
self.type_for_mle = type_for_mle
@property
def aic(self):
"""Compute the aic from the list of parameters in the results,
find a way to comptue it directly from the result to compare"""
location = self.name_to_value['location']
a = np.array(location)
print(a)
print(len(a))
print('here2')
# 'location', 'logscale', 'shape'
raise NotImplementedError
@property
def log_scale(self):
return True
@property
def margin_coef_ordered_dict(self):
# print(self.name_to_value.keys())
# raise NotImplementedError
values = np.array(self.name_to_value['coefficients'])
return get_margin_coef_ordered_dict(self.param_name_to_dim, values, self.type_for_mle,
dim_to_coordinate_name=self.dim_to_coordinate)
...@@ -4,6 +4,7 @@ import io ...@@ -4,6 +4,7 @@ import io
import os.path as op import os.path as op
import random import random
import warnings import warnings
from collections import OrderedDict
from contextlib import redirect_stdout from contextlib import redirect_stdout
from typing import Dict from typing import Dict
...@@ -25,6 +26,7 @@ pandas2ri.activate() ...@@ -25,6 +26,7 @@ pandas2ri.activate()
r.library('SpatialExtremes') r.library('SpatialExtremes')
r.library('data.table') r.library('data.table')
r.library('quantreg') r.library('quantreg')
r.library('evgam')
# Desactivate temporarily warnings # Desactivate temporarily warnings
default_filters = warnings.filters.copy() default_filters = warnings.filters.copy()
warnings.filterwarnings("ignore") warnings.filterwarnings("ignore")
...@@ -151,10 +153,9 @@ def get_coord(df_coordinates: pd.DataFrame): ...@@ -151,10 +153,9 @@ def get_coord(df_coordinates: pd.DataFrame):
return coord return coord
def get_coord_df(df_coordinates: pd.DataFrame): def get_r_dataframe_from_python_dataframe(df: pd.DataFrame):
coord = pandas2ri.py2ri_pandasdataframe(df_coordinates) coord = pandas2ri.py2ri_pandasdataframe(df)
# coord = r.transpose(coord) colname = df.columns
colname = df_coordinates.columns
coord.colnames = r.c(colname) coord.colnames = r.c(colname)
coord = r('data.frame')(coord, stringsAsFactors=True) coord = r('data.frame')(coord, stringsAsFactors=True)
return coord return coord
...@@ -179,14 +180,18 @@ def new_coef_name_to_old_coef_names(): ...@@ -179,14 +180,18 @@ def new_coef_name_to_old_coef_names():
} }
def get_margin_formula_extremes(fit_marge_form_dict) -> Dict: def get_margin_formula_extremes(fit_marge_form_dict, transformed_as_formula=True) -> Dict:
v_to_str = lambda v: ' '.join(v.split()[2:]) if v != 'NULL' else ' 1' v_to_str = lambda v: ' '.join(v.split()[2:]) if v != 'NULL' else ' 1'
form_dict = { form_dict = {
k: '~ ' + ' + '.join( k: '~ ' + ' + '.join(
[v_to_str(fit_marge_form_dict[e]) for e in l if e in fit_marge_form_dict]) [v_to_str(fit_marge_form_dict[e]) for e in l if e in fit_marge_form_dict])
for k, l in new_coef_name_to_old_coef_names().items() for k, l in new_coef_name_to_old_coef_names().items()
} }
return {k: robjects.Formula(v) for k, v in form_dict.items()} res = OrderedDict()
ordered_keys = ['location.fun', 'scale.fun', 'shape.fun']
for k in ordered_keys:
res[k] = robjects.Formula(form_dict[k]) if transformed_as_formula else form_dict[k]
return res
# def conversion_to_FloatVector(data): # def conversion_to_FloatVector(data):
# """Convert DataFrame or numpy array into FloatVector for r""" # """Convert DataFrame or numpy array into FloatVector for r"""
......
import unittest
import numpy as np
import pandas as pd
from extreme_fit.estimator.margin_estimator.utils import fitted_linear_margin_estimator
from extreme_fit.estimator.margin_estimator.abstract_margin_estimator import LinearMarginEstimator
from extreme_fit.model.margin_model.utils import \
MarginFitMethod
from extreme_fit.model.margin_model.linear_margin_model.temporal_linear_margin_models import StationaryTemporalModel, \
NonStationaryLocationTemporalModel
from extreme_fit.model.utils import r, set_seed_r
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
from spatio_temporal_dataset.coordinates.temporal_coordinates.abstract_temporal_coordinates import \
AbstractTemporalCoordinates
from spatio_temporal_dataset.dataset.abstract_dataset import AbstractDataset
from spatio_temporal_dataset.spatio_temporal_observations.abstract_spatio_temporal_observations import \
AbstractSpatioTemporalObservations
from test.test_utils import load_non_stationary_temporal_margin_models
class TestGevTemporalEvGam(unittest.TestCase):
def setUp(self) -> None:
set_seed_r()
r("""
N <- 50
loc = 0; scale = 2; shape <- 1
x_gev <- rgev(N, loc = loc, scale = scale, shape = shape)
start_loc = 0; start_scale = 1; start_shape = 1
""")
# Compute the stationary temporal margin with isMev
self.start_year = 0
df = pd.DataFrame({AbstractCoordinates.COORDINATE_T: range(self.start_year, self.start_year + 50)})
self.coordinates = AbstractTemporalCoordinates.from_df(df)
df2 = pd.DataFrame(data=np.array(r['x_gev']), index=df.index)
observations = AbstractSpatioTemporalObservations(df_maxima_gev=df2)
self.dataset = AbstractDataset(observations=observations, coordinates=self.coordinates)
self.fit_method = MarginFitMethod.evgam
def test_gev_temporal_margin_fit_stationary(self):
# Create estimator
estimator = fitted_linear_margin_estimator(StationaryTemporalModel, self.coordinates, self.dataset,
starting_year=0,
fit_method=self.fit_method)
ref = {'loc': 0.043852626609682636, 'scale': 2.0696383929640807, 'shape': 0.8290699088428524}
for year in range(1, 3):
mle_params_estimated = estimator.function_from_fit.get_params(np.array([year])).to_dict()
for key in ref.keys():
self.assertAlmostEqual(ref[key], mle_params_estimated[key], places=3)
# def test_gev_temporal_margin_fit_nonstationary(self):
# # Create estimator
# margin_models = load_non_stationary_temporal_margin_models(self.coordinates)
# for margin_model in margin_models:
# estimator = LinearMarginEstimator(self.dataset, margin_model)
# estimator.fit()
# # Checks that parameters returned are indeed different
# mle_params_estimated_year1 = estimator.function_from_fit.get_params(np.array([1])).to_dict()
# mle_params_estimated_year3 = estimator.function_from_fit.get_params(np.array([3])).to_dict()
# self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3)
#
# def test_gev_temporal_margin_fit_nonstationary_with_start_point(self):
# # Create estimator
# estimator = self.fit_non_stationary_estimator(starting_point=3)
# self.assertNotEqual(estimator.function_from_fit.mu1_temporal_trend, 0.0)
# # Checks starting point parameter are well passed
# self.assertEqual(3, estimator.function_from_fit.starting_point)
# # Checks that parameters returned are indeed different
# mle_params_estimated_year1 = estimator.function_from_fit.get_params(np.array([1])).to_dict()
# mle_params_estimated_year3 = estimator.function_from_fit.get_params(np.array([3])).to_dict()
# self.assertEqual(mle_params_estimated_year1, mle_params_estimated_year3)
# mle_params_estimated_year5 = estimator.function_from_fit.get_params(np.array([5])).to_dict()
# self.assertNotEqual(mle_params_estimated_year5, mle_params_estimated_year3)
#
# def fit_non_stationary_estimator(self, starting_point):
# margin_model = NonStationaryLocationTemporalModel(self.coordinates,
# starting_point=starting_point + self.start_year)
# estimator = LinearMarginEstimator(self.dataset, margin_model)
# estimator.fit()
# return estimator
#
# def test_two_different_starting_points(self):
# # Create two different estimators
# estimator1 = self.fit_non_stationary_estimator(starting_point=3)
# estimator2 = self.fit_non_stationary_estimator(starting_point=28)
# mu1_estimator1 = estimator1.function_from_fit.mu1_temporal_trend
# mu1_estimator2 = estimator2.function_from_fit.mu1_temporal_trend
# self.assertNotEqual(mu1_estimator1, mu1_estimator2)
if __name__ == '__main__':
unittest.main()
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment