Commit b37ea204 authored by Le Roux Erwan's avatar Le Roux Erwan
Browse files

[projection swe] add crpss and train train test. improve the plot. fix bug for...

[projection swe] add crpss and train train test. improve the plot. fix bug for selection of plausible models.
parent 5bc105b8
No related merge requests found
Showing with 130 additions and 65 deletions
+130 -65
......@@ -70,19 +70,24 @@ class ReturnLevelBootstrap(object):
def compute_all_return_level(self):
idxs = list(range(self.nb_bootstrap))
multiprocess = self.multiprocess
if AbstractExtractEurocodeReturnLevel.NB_BOOTSTRAP <= 10:
multiprocess = False
if self.multiprocess is None:
if multiprocess is None:
with Pool(NB_CORES) as p:
batchsize = math.ceil(AbstractExtractEurocodeReturnLevel.NB_BOOTSTRAP / NB_CORES)
list_return_level = p.map(self.compute_return_level_batch, batch(idxs, batchsize=batchsize))
return_level_list = list(chain.from_iterable(list_return_level))
elif self.multiprocess:
elif multiprocess:
f = self.compute_return_level_physically_plausible if self.only_physically_plausible_fits else self.compute_return_level
with Pool(NB_CORES) as p:
return_level_list = p.map(self.compute_return_level, idxs)
return_level_list = p.map(f, idxs)
else:
return_level_list = [self.compute_return_level(idx) for idx in idxs]
f = self.compute_return_level_physically_plausible if self.only_physically_plausible_fits else self.compute_return_level
return_level_list = [f(idx) for idx in idxs]
return return_level_list
......
from extreme_data.meteo_france_data.adamont_data.adamont.adamont_safran import AdamontSnowfall
from extreme_data.meteo_france_data.adamont_data.adamont_scenario import AdamontScenario, get_gcm_rcm_couples
from extreme_data.meteo_france_data.scm_models_data.safran.safran_max_snowf import SafranSnowfall2020
from extreme_data.meteo_france_data.scm_models_data.utils_function import ReturnLevelBootstrap
from extreme_fit.model.result_from_model_fit.result_from_extremes.abstract_extract_eurocode_return_level import \
AbstractExtractEurocodeReturnLevel
from projects.projected_swe.model_as_truth_visualizer.model_as_truth import ModelAsTruth
......@@ -12,56 +13,64 @@ from projects.projected_swe.weight_solver.knutti_weight_solver_with_bootstrap im
def main():
altitude = 900
# Set some parameters for the bootstrap
ReturnLevelBootstrap.only_physically_plausible_fits = True
year_min_histo = 1982
year_max_histo = 2011
year_min_projected = 2070
year_max_projected = 2099
scenario = AdamontScenario.rcp85_extended
fast = None
fast = False
gcm_rcm_couples = get_gcm_rcm_couples(adamont_scenario=scenario)
indicator_class = AnnualMaximaMeanIndicator
if fast is None:
AbstractExtractEurocodeReturnLevel.NB_BOOTSTRAP = 10
year_couples = [(1982, 2011), (2012, 2041), (2042, 2071)]
altitudes = [900, 1800]
massif_names = None
knutti_weight_solver_classes = [EqualWeight,
KnuttiWeightSolver,
knutti_weight_solver_classes = [KnuttiWeightSolver,
KnuttiWeightSolverWithBootstrapVersion1,
KnuttiWeightSolverWithBootstrapVersion2]
indicator_class = ReturnLevel30YearsIndicator
gcm_rcm_couples = gcm_rcm_couples[:3]
sigma_list = [10, 100, 1000, 10000]
KnuttiWeightSolverWithBootstrapVersion2][:1]
gcm_rcm_couples = gcm_rcm_couples[:8]
sigma_list = [6, 7, 8]
elif fast:
altitudes = [900]
year_couples = [(1982, 2011)]
AbstractExtractEurocodeReturnLevel.NB_BOOTSTRAP = 10
massif_names = ['Vercors']
knutti_weight_solver_classes = [EqualWeight, KnuttiWeightSolver,
KnuttiWeightSolverWithBootstrapVersion1]
indicator_class = ReturnLevel30YearsIndicator
massif_names = ['Chartreuse']
knutti_weight_solver_classes = [KnuttiWeightSolver]
gcm_rcm_couples = gcm_rcm_couples[:3]
sigma_list = [100, 1000]
sigma_list = [10]
else:
altitudes = [900, 1800, 2700, 3600][:2]
year_couples = [(1982, 2011), (2012, 2041), (2042, 2071), (2070, 2099)][:-1]
massif_names = None
indicator_class = AnnualMaximaMeanIndicator
knutti_weight_solver_classes = [KnuttiWeightSolver,
KnuttiWeightSolverWithBootstrapVersion1,
KnuttiWeightSolverWithBootstrapVersion2]
AbstractExtractEurocodeReturnLevel.NB_BOOTSTRAP = 10
knutti_weight_solver_classes = [KnuttiWeightSolver][:]
gcm_rcm_couples = gcm_rcm_couples[:]
sigma_list = [i + 1 for i in range(10)]
observation_study = SafranSnowfall2020(altitude=altitude, year_min=year_min_histo, year_max=year_max_histo)
couple_to_historical_study = {c: AdamontSnowfall(altitude=altitude, scenario=scenario,
year_min=year_min_histo, year_max=year_max_histo,
gcm_rcm_couple=c) for c in gcm_rcm_couples}
couple_to_projected_study = {c: AdamontSnowfall(altitude=altitude, scenario=scenario,
year_min=year_min_projected, year_max=year_max_projected,
gcm_rcm_couple=c) for c in gcm_rcm_couples
}
for altitude in altitudes:
for year_couple in year_couples:
year_min_projected, year_max_projected = year_couple
observation_study = SafranSnowfall2020(altitude=altitude, year_min=year_min_histo, year_max=year_max_histo)
couple_to_historical_study = {c: AdamontSnowfall(altitude=altitude, scenario=scenario,
year_min=year_min_histo, year_max=year_max_histo,
gcm_rcm_couple=c) for c in gcm_rcm_couples}
if (year_min_projected, year_max_projected) == (year_min_histo, year_max_histo):
couple_to_projected_study = couple_to_historical_study
else:
couple_to_projected_study = {c: AdamontSnowfall(altitude=altitude, scenario=scenario,
year_min=year_min_projected, year_max=year_max_projected,
gcm_rcm_couple=c) for c in gcm_rcm_couples
}
model_as_truth = ModelAsTruth(observation_study, couple_to_projected_study, couple_to_historical_study,
indicator_class, knutti_weight_solver_classes, massif_names,
add_interdependence_weight=False)
model_as_truth.plot_against_sigma(sigma_list)
model_as_truth = ModelAsTruth(observation_study, couple_to_projected_study, couple_to_historical_study,
indicator_class, knutti_weight_solver_classes, massif_names,
add_interdependence_weight=False)
model_as_truth.plot_against_sigma(sigma_list)
if __name__ == '__main__':
......
......@@ -5,10 +5,13 @@ from matplotlib.lines import Line2D
from scipy.special import softmax
import numpy as np
from extreme_data.meteo_france_data.adamont_data.adamont_scenario import scenario_to_str
from extreme_data.meteo_france_data.scm_models_data.abstract_study import AbstractStudy
from extreme_data.meteo_france_data.scm_models_data.visualization.study_visualizer import StudyVisualizer
from projects.projected_swe.old_weight_computer.utils import save_to_filepath
from projects.projected_swe.weight_solver.abtract_weight_solver import AbstractWeightSolver
from projects.projected_swe.weight_solver.default_weight_solver import EqualWeight
from projects.projected_swe.weight_solver.indicator import AbstractIndicator
from projects.projected_swe.weight_solver.indicator import AbstractIndicator, WeightComputationException
from projects.projected_swe.weight_solver.knutti_weight_solver import KnuttiWeightSolver
from projects.projected_swe.weight_solver.knutti_weight_solver_with_bootstrap import \
KnuttiWeightSolverWithBootstrapVersion2, KnuttiWeightSolverWithBootstrapVersion1
......@@ -61,6 +64,7 @@ class ModelAsTruth(object):
assert len(x_list) == len(sigma_list)
label = get_display_name_from_object_type(solver_class)
color = self.solver_class_to_color[solver_class]
print(solver_class, score_list, np.array(score_list).mean(axis=1), np.median(np.array(score_list), axis=1))
bplot = ax.boxplot(score_list, positions=x_list, widths=self.width, patch_artist=True, showmeans=True,
labels=[str(sigma) for sigma in sigma_list])
for patch in bplot['boxes']:
......@@ -71,10 +75,27 @@ class ModelAsTruth(object):
custom_lines = [Line2D([0], [0], color=color, lw=4) for color in colors]
ax.legend(custom_lines, labels, prop={'size': 8}, loc='upper left')
ax.set_xlim(min(all_x) - self.width, max(all_x) + self.width)
_, max_y = ax.get_ylim()
ax.set_ylim((0, max_y * 1.1))
study_projected = list(self.couple_to_study_projected.values())[0]
title = 'crpss between a weighted forecast and an unweighted forecast \n' \
'at {} m for {} of snowfall for {}-{} (%)'.format(self.observation_study.altitude,
self.indicator_class.str_indicator(),
study_projected.year_min,
study_projected.year_max)
ax2 = ax.twiny()
ax2.set_xlabel('{} for {} GCM/RCM couples'.format(scenario_to_str(study_projected.scenario), len(self.couple_to_study_projected)))
ax.set_xlabel('sigma skill parameter')
ax.set_ylabel(title)
plt.show()
# Plot a zero horizontal line
lim_left, lim_right = ax.get_xlim()
ax.hlines(0, xmin=lim_left, xmax=lim_right, linestyles='dashed')
# Save or show file
visualizer = StudyVisualizer(self.observation_study, show=False, save_to_file=True)
visualizer.plot_name = title.split('\n')[1]
visualizer.show_or_save_to_file(no_title=True)
plt.close()
def get_x_list(self, j, sigma_list):
shift = len(self.knutti_weight_solver_classes) + 1
......@@ -95,19 +116,25 @@ class ModelAsTruth(object):
c != gcm_rcm_couple}
couple_to_study_projected = {c: s for c, s in self.couple_to_study_projected.items() if c != gcm_rcm_couple}
if issubclass(solver_class, KnuttiWeightSolver):
weight_solver = solver_class(sigma, None, historical_observation_study, couple_to_study_historical,
self.indicator_class, self.massif_names, self.add_interdependence_weight,
) # type: AbstractWeightSolver
else:
weight_solver = solver_class(historical_observation_study, couple_to_study_historical,
self.indicator_class, self.massif_names, self.add_interdependence_weight,
) # type: AbstractWeightSolver
print(solver_class, sigma, weight_solver.couple_to_weight.values())
mean_score = weight_solver.mean_prediction_score(self.massif_names, couple_to_study_projected,
projected_observation_study)
score_list.append(mean_score)
try:
if issubclass(solver_class, KnuttiWeightSolver):
weight_solver = solver_class(sigma, None, historical_observation_study, couple_to_study_historical,
self.indicator_class, self.massif_names, self.add_interdependence_weight,
) # type: AbstractWeightSolver
else:
weight_solver = solver_class(historical_observation_study, couple_to_study_historical,
self.indicator_class, self.massif_names, self.add_interdependence_weight,
) # type: AbstractWeightSolver
print(solver_class, sigma, weight_solver.couple_to_weight.values())
mean_score = weight_solver.mean_prediction_score(self.massif_names, couple_to_study_projected,
projected_observation_study)
print(mean_score)
if mean_score < 1e4:
score_list.append(mean_score)
except WeightComputationException:
pass
# print(solver_class, sigma, score_list)
return np.array(score_list)
def get_massif_names_subset_from_study_list(self, study_list: List[AbstractStudy]):
......
......@@ -5,7 +5,8 @@ from scipy.special import softmax
import numpy as np
from extreme_data.meteo_france_data.scm_models_data.abstract_study import AbstractStudy
from projects.projected_swe.weight_solver.indicator import AbstractIndicator, ReturnLevelComputationException
from projects.projected_swe.weight_solver.indicator import AbstractIndicator, ReturnLevelComputationException, \
ReturnLevel30YearsIndicator
class AbstractWeightSolver(object):
......@@ -47,7 +48,12 @@ class AbstractWeightSolver(object):
couples, ensemble = zip(*list(couple_to_projected_indicator.items()))
couple_to_weight = self.couple_to_weight
weights = [couple_to_weight[c] for c in couples]
return ps.crps_ensemble(target, ensemble, weights=weights)
crps_weighted = ps.crps_ensemble(target, ensemble, weights=weights)
nb_weights = len(weights)
weights_unweighted = [1 / nb_weights for _ in range(nb_weights)]
crps_unweighted = ps.crps_ensemble(target, ensemble, weights=weights_unweighted)
crpss = 100 * (crps_weighted - crps_unweighted) / crps_unweighted
return crpss
except ReturnLevelComputationException:
return np.nan
......@@ -56,14 +62,14 @@ class AbstractWeightSolver(object):
massif_name in massif_names]
scores_filtered = [s for s in scores if not np.isnan(s)]
assert len(scores_filtered) > 0
nb_massif_names_removed = len(scores) - len(scores_filtered)
if nb_massif_names_removed > 0:
print('{} massifs removed'.format(nb_massif_names_removed))
return np.mean(scores_filtered)
def target(self, massif_name, projected_observation_study):
assert issubclass(self.indicator_class, AbstractIndicator)
return self.indicator_class.get_indicator(projected_observation_study, massif_name, bootstrap=True).mean()
if self.indicator_class is ReturnLevel30YearsIndicator:
return self.indicator_class.get_indicator(projected_observation_study, massif_name, bootstrap=True).mean()
else:
return self.indicator_class.get_indicator(projected_observation_study, massif_name)
# Weight computation on the historical period
......
......@@ -19,6 +19,10 @@ class AbstractIndicator(object):
def get_indicator(cls, study: AbstractStudy, massif_name, bootstrap=False):
raise NotImplementedError
@classmethod
def str_indicator(cls):
raise NotImplementedError
class AnnualMaximaMeanIndicator(AbstractIndicator):
......@@ -29,6 +33,10 @@ class AnnualMaximaMeanIndicator(AbstractIndicator):
else:
return study.massif_name_to_annual_maxima[massif_name].mean()
@classmethod
def str_indicator(cls):
return 'Mean annual maxima'
class ReturnLevel30YearsIndicator(AbstractIndicator):
......@@ -41,3 +49,7 @@ class ReturnLevel30YearsIndicator(AbstractIndicator):
return study.massif_name_to_return_level(return_period=30)[massif_name]
except KeyError:
raise ReturnLevelComputationException
@classmethod
def str_indicator(cls, bootstrap):
return '30-year return level'
......@@ -15,8 +15,6 @@ class KnuttiWeightSolver(AbstractWeightSolver):
self.sigma_interdependence = sigma_interdependence
if self.add_interdependence_weight:
assert self.sigma_interdependence is not None
# Set some parameters for the bootstrap
ReturnLevelBootstrap.only_physically_plausible_fits = True
# Set some parameters to speed up results (by caching some results)
study_list = [self.observation_study] + list(self.couple_to_historical_study.values())
for study in study_list:
......@@ -29,10 +27,12 @@ class KnuttiWeightSolver(AbstractWeightSolver):
[self.compute_skill_one_massif(couple_study, massif_name) for couple_study in self.study_list]
if self.add_interdependence_weight:
[self.compute_interdependence_nllh_one_massif(couple_study, massif_name) for couple_study in self.study_list]
except WeightComputationException:
except WeightComputationException as e:
continue
self.massif_names_for_computation.append(massif_name)
assert len(self.massif_names_for_computation) > 0, 'Sigma values should be increased'
if len(self.massif_names_for_computation) == 0:
print('Sigma values should be increased')
raise WeightComputationException
@property
def nb_massifs_for_computation(self):
......@@ -64,7 +64,7 @@ class KnuttiWeightSolver(AbstractWeightSolver):
def compute_nllh_from_two_study(self, study_1, study_2, sigma, massif_name):
differences = self.differences(study_1, study_2, massif_name)
scale = np.sqrt(np.power(sigma, 2) * self.nb_massifs_for_computation / 2)
proba = norm.pdf(differences, 0, scale)
proba = norm.pdf(x=differences, loc=0, scale=scale)
proba_positive = (proba > 0).all()
proba_lower_than_one = (proba <= 1).all()
if not (proba_positive and proba_lower_than_one):
......
......@@ -5,8 +5,10 @@ from extreme_data.meteo_france_data.adamont_data.adamont.adamont_safran import A
from extreme_data.meteo_france_data.adamont_data.adamont_scenario import AdamontScenario, get_gcm_rcm_couples
from extreme_data.meteo_france_data.scm_models_data.safran.safran import SafranSnowfall1Day
from extreme_data.meteo_france_data.scm_models_data.safran.safran_max_snowf import SafranSnowfall2020
from extreme_data.meteo_france_data.scm_models_data.utils_function import ReturnLevelBootstrap
from extreme_fit.model.result_from_model_fit.result_from_extremes.abstract_extract_eurocode_return_level import \
AbstractExtractEurocodeReturnLevel
from extreme_fit.model.utils import set_seed_for_test
from projects.projected_swe.weight_solver.indicator import AnnualMaximaMeanIndicator, ReturnLevel30YearsIndicator
from projects.projected_swe.weight_solver.knutti_weight_solver import KnuttiWeightSolver
from projects.projected_swe.weight_solver.knutti_weight_solver_with_bootstrap import \
......@@ -16,6 +18,8 @@ from projects.projected_swe.weight_solver.knutti_weight_solver_with_bootstrap im
class TestModelAsTruth(unittest.TestCase):
def test_knutti_weight_solver(self):
set_seed_for_test()
ReturnLevelBootstrap.only_physically_plausible_fits = True
altitude = 900
year_min = 1982
year_max = 2011
......@@ -31,11 +35,13 @@ class TestModelAsTruth(unittest.TestCase):
KnuttiWeightSolverWithBootstrapVersion2][:]:
if knutti_weight_solver_class in [KnuttiWeightSolverWithBootstrapVersion1, KnuttiWeightSolverWithBootstrapVersion2]:
idx = 1
sigma = 1000
else:
sigma = 10
idx = 0
for indicator_class in [AnnualMaximaMeanIndicator, ReturnLevel30YearsIndicator][idx:]:
for add_interdependence_weight in [False, True]:
knutti_weight = knutti_weight_solver_class(sigma_skill=100.0, sigma_interdependence=100.0,
knutti_weight = knutti_weight_solver_class(sigma_skill=sigma, sigma_interdependence=sigma,
massif_names=massif_names,
observation_study=observation_study,
couple_to_historical_study=couple_to_study,
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment