Commit e1c25c9a authored by Le Roux Erwan's avatar Le Roux Erwan
Browse files

[projections] add some code for to load & compute the GCM temperature of each GCM considered.

parent c9c77367
No related merge requests found
Showing with 167 additions and 0 deletions
+167 -0
......@@ -52,6 +52,21 @@ def get_gcm_rcm_couple_adamont_to_full_name(version):
return gcm_rcm_couple_adamont_v2_to_full_name
def get_gcm_list(adamont_version):
s = set([gcm for gcm, _ in get_gcm_rcm_couple_adamont_to_full_name(adamont_version).keys()])
return list(s)
gcm_to_rnumber = \
{
'MPI-ESM-LR': 2,
'CNRM-CM5': 11,
'IPSL-CM5A-MR': 1,
'EC-EARTH': 12,
'HadGEM2-ES': 1,
'NorESM1-M': 1
}
gcm_rcm_couple_adamont_v1_to_full_name = {
('CNRM-CM5', 'ALADIN53'): 'CNRM-ALADIN53_CNRM-CERFACS-CNRM-CM5',
('CNRM-CM5', 'RCA4'): 'SMHI-RCA4_CNRM-CERFACS-CNRM-CM5',
......@@ -105,3 +120,6 @@ gcm_rcm_couple_adamont_v2_to_full_name = {
# For this member there is only the historical anyway
# ('ERAINT', 'ALADIN62'): 'CNRM-ALADIN62_ECMWF-ERAINT',
}
if __name__ == '__main__':
print(get_gcm_list(adamont_version=2))
import os.path as op
import pandas as pd
import subprocess
from datetime import datetime, timedelta
import cdsapi
import numpy as np
from netCDF4._netCDF4 import Dataset, OrderedDict
from extreme_data.meteo_france_data.adamont_data.adamont_gcm_rcm_couples import gcm_to_rnumber, get_gcm_list
from extreme_data.meteo_france_data.adamont_data.adamont_scenario import get_year_min_and_year_max_from_scenario, \
AdamontScenario, adamont_scenarios_real
from extreme_data.utils import DATA_PATH
GLOBALTEMP_WEB_PATH = "https://climexp.knmi.nl/CMIP5/Tglobal/"
GLOBALTEMP_DATA_PATH = op.join(DATA_PATH, 'CMIP5_global_temp')
def get_scenario_name(scenario):
if scenario is AdamontScenario.histo:
return 'historical'
else:
return str(scenario).split('.')[-1]
def get_year_min_and_year_max_for_global_temp(scenario):
if scenario is AdamontScenario.histo:
return 1951, 2005
else:
return 2006, 2100
def get_periods(gcm, scenario):
if scenario is AdamontScenario.histo:
if gcm == 'EC-EARTH':
return ['195001-201212']
else:
return ['185001-200512']
else:
if gcm == 'CNRM-CM5':
return []
else:
return ['200601-210012']
def year_to_global_mean_temp(gcm, scenario):
# Compute everything
periods = get_periods(gcm, scenario)
ensemble_member = 'r{}i1p1'.format(gcm_to_rnumber[gcm])
scenario_name = get_scenario_name(scenario)
year_min, year_max = get_year_min_and_year_max_for_global_temp(scenario)
# Standards
mean_annual_column_name = 'Annual mean'
zip_filepath = op.join(GLOBALTEMP_DATA_PATH, 'download.zip')
# Create a csv file for each period
for period in periods:
filename = 'tas_Amon_{}_{}_{}_{}'.format(gcm, scenario_name, ensemble_member, period)
nc_filepath = op.join(GLOBALTEMP_DATA_PATH, filename + '.nc')
csv_filepath = op.join(GLOBALTEMP_DATA_PATH, filename + '.csv')
# Download if needed
if not op.exists(nc_filepath):
download_nc(ensemble_member, gcm, period, scenario_name, zip_filepath)
# Transform nc file into csv file
if not op.exists(csv_filepath):
nc_to_csv(csv_filepath, mean_annual_column_name, nc_filepath, year_max, year_min)
# Concatenate all csv together into a single summary_csv_filepath
# Load csv file
df = pd.read_csv(csv_filepath, index_col=0)
d = OrderedDict(df[mean_annual_column_name])
print(gcm, scenario_name, np.mean(list(d.values())))
return d
def nc_to_csv(csv_filepath, mean_annual_column_name, nc_filepath, year_max, year_min):
dataset = Dataset(nc_filepath)
tas_list = np.array(dataset.variables['tas'])
tas_list = np.mean(tas_list, axis=1)
tas_list = np.mean(tas_list, axis=1)
# 'days since 1850-1-1 00:00:00'
time_list = np.array(dataset.variables['time'])
assert len(time_list) == len(tas_list)
start = datetime(year=1850, month=1, day=1, hour=0, minute=0, second=0)
date_list = [start + timedelta(days=time) for time in time_list]
winter_year_list = [date.year if date.month < 8 else date.year + 1 for date in date_list]
winter_year_to_tas_list = {winter_year: [] for winter_year in range(year_min, year_max + 1)}
for winter_year, tas in zip(winter_year_list, tas_list):
if year_min <= winter_year <= year_max:
winter_year_to_tas_list[winter_year].append(tas)
# we have monthly values
for tas_list in winter_year_to_tas_list.values():
assert len(tas_list) == 12
winter_year_to_mean_tas = OrderedDict()
for winter_year, t in winter_year_to_tas_list.items():
winter_year_to_mean_tas[winter_year] = np.mean(t)
s = pd.Series(winter_year_to_mean_tas)
df = pd.DataFrame({mean_annual_column_name: s})
df.to_csv(csv_filepath)
def download_nc(ensemble_member, gcm, period, scenario_name, zip_filepath):
gcm_lower = '_'.join(gcm.lower().split('-'))
c = cdsapi.Client()
c.retrieve(
'projections-cmip5-monthly-single-levels',
{
'ensemble_member': ensemble_member,
'format': 'zip',
'experiment': scenario_name,
'variable': '2m_temperature',
'model': gcm_lower,
'period': period,
},
zip_filepath)
# unzip and delete
request_list = [
'unzip {} -d {}'.format(zip_filepath, op.dirname(zip_filepath)),
'rm {}'.format(zip_filepath)
]
for request in request_list:
print(request)
subprocess.run(request, shell=True)
def main_example():
scenario = AdamontScenario.histo
gcm = 'EC-EARTH'
year_to_global_mean_temp(gcm, scenario)
def main_test_cmip5_loader():
for scenario in adamont_scenarios_real[:1]:
for gcm in get_gcm_list(adamont_version=2)[:]:
if gcm != 'CNRM-CM5':
print(gcm, scenario)
year_to_global_temp = year_to_global_mean_temp(gcm, scenario)
print(year_to_global_temp)
if __name__ == '__main__':
# main_example()
main_test_cmip5_loader()
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment