Commit e23e220a authored by Le Roux Erwan's avatar Le Roux Erwan
Browse files

[MARGIN FUNCTION] add linear coef object - refactor accordingly

parent 384abbcd
No related merge requests found
Showing with 246 additions and 114 deletions
+246 -114
from extreme_estimator.extreme_models.margin_model.abstract_margin_model import AbstractMarginModel from extreme_estimator.extreme_models.margin_model.abstract_margin_model import AbstractMarginModel
from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \
AbstractMarginFunction
from extreme_estimator.extreme_models.margin_model.smooth_margin_model import LinearMarginModel from extreme_estimator.extreme_models.margin_model.smooth_margin_model import LinearMarginModel
from extreme_estimator.extreme_models.max_stable_model.abstract_max_stable_model import AbstractMaxStableModel from extreme_estimator.extreme_models.max_stable_model.abstract_max_stable_model import AbstractMaxStableModel
from extreme_estimator.estimator.abstract_estimator import AbstractEstimator from extreme_estimator.estimator.abstract_estimator import AbstractEstimator
...@@ -8,7 +10,21 @@ from spatio_temporal_dataset.dataset.abstract_dataset import AbstractDataset ...@@ -8,7 +10,21 @@ from spatio_temporal_dataset.dataset.abstract_dataset import AbstractDataset
class AbstractFullEstimator(AbstractEstimator): class AbstractFullEstimator(AbstractEstimator):
pass
def __init__(self, dataset: AbstractDataset):
super().__init__(dataset)
self._margin_function_fitted = None
self._max_stable_model_fitted = None
@property
def margin_function_fitted(self) -> AbstractMarginFunction:
assert self._margin_function_fitted is not None, 'Error: estimator has not been fitted'
return self._margin_function_fitted
# @property
# def max_stable_fitted(self) -> AbstractMarginFunction:
# assert self._margin_function_fitted is not None, 'Error: estimator has not been fitted'
# return self._margin_function_fitted
class SmoothMarginalsThenUnitaryMsp(AbstractFullEstimator): class SmoothMarginalsThenUnitaryMsp(AbstractFullEstimator):
...@@ -52,10 +68,11 @@ class FullEstimatorInASingleStepWithSmoothMargin(AbstractFullEstimator): ...@@ -52,10 +68,11 @@ class FullEstimatorInASingleStepWithSmoothMargin(AbstractFullEstimator):
maxima_frech=self.dataset.maxima_frech, maxima_frech=self.dataset.maxima_frech,
df_coordinates=self.dataset.df_coordinates, df_coordinates=self.dataset.df_coordinates,
fit_marge=True, fit_marge=True,
fit_marge_form_dict=self.smooth_margin_function_to_fit.fit_marge_form_dict, fit_marge_form_dict=self.smooth_margin_function_to_fit.form_dict,
margin_start_dict=self.smooth_margin_function_to_fit.margin_start_dict margin_start_dict=self.smooth_margin_function_to_fit.coef_dict
) )
# Initialize # Initialize
# self._margin_function_fitted =
class PointwiseAndThenUnitaryMsp(AbstractFullEstimator): class PointwiseAndThenUnitaryMsp(AbstractFullEstimator):
......
...@@ -9,9 +9,8 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo ...@@ -9,9 +9,8 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo
class AbstractMarginFunction(object): class AbstractMarginFunction(object):
""" Class of function mapping points from a space S (could be 1D, 2D,...) to R^3 (the 3 parameters of the GEV)""" """ Class of function mapping points from a space S (could be 1D, 2D,...) to R^3 (the 3 parameters of the GEV)"""
def __init__(self, coordinates: AbstractCoordinates, default_params: GevParams): def __init__(self, coordinates: AbstractCoordinates):
self.coordinates = coordinates self.coordinates = coordinates
self.default_params = default_params.to_dict()
def get_gev_params(self, coordinate: np.ndarray) -> GevParams: def get_gev_params(self, coordinate: np.ndarray) -> GevParams:
"""Main method that maps each coordinate to its GEV parameters""" """Main method that maps each coordinate to its GEV parameters"""
......
from typing import Dict, List, Tuple from typing import Dict
import numpy as np import numpy as np
from extreme_estimator.extreme_models.margin_model.margin_function.param_function import ConstantParamFunction, \ from extreme_estimator.extreme_models.margin_model.param_function.param_function import ParamFunction
LinearOneAxisParamFunction, ParamFunction, LinearParamFunction
from extreme_estimator.gev_params import GevParams from extreme_estimator.gev_params import GevParams
from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \ from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \
AbstractMarginFunction AbstractMarginFunction
...@@ -13,9 +12,9 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo ...@@ -13,9 +12,9 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo
class IndependentMarginFunction(AbstractMarginFunction): class IndependentMarginFunction(AbstractMarginFunction):
"""Margin Function where each parameter of the GEV are modeled independently""" """Margin Function where each parameter of the GEV are modeled independently"""
def __init__(self, coordinates: AbstractCoordinates, default_params: GevParams): def __init__(self, coordinates: AbstractCoordinates):
"""Attribute 'gev_param_name_to_param_function' maps each GEV parameter to its corresponding function""" """Attribute 'gev_param_name_to_param_function' maps each GEV parameter to its corresponding function"""
super().__init__(coordinates, default_params) super().__init__(coordinates)
self.gev_param_name_to_param_function = None # type: Dict[str, ParamFunction] self.gev_param_name_to_param_function = None # type: Dict[str, ParamFunction]
def get_gev_params(self, coordinate: np.ndarray) -> GevParams: def get_gev_params(self, coordinate: np.ndarray) -> GevParams:
...@@ -29,80 +28,3 @@ class IndependentMarginFunction(AbstractMarginFunction): ...@@ -29,80 +28,3 @@ class IndependentMarginFunction(AbstractMarginFunction):
return GevParams.from_dict(gev_params) return GevParams.from_dict(gev_params)
class LinearMarginFunction(IndependentMarginFunction):
""" Margin Function, where each parameter can augment linearly as follows:
On the extremal point along all the dimension, the GEV parameters will equal the default_param value
Then, it will augment linearly along a single linear axis"""
def __init__(self, coordinates: AbstractCoordinates,
default_params: GevParams,
gev_param_name_to_linear_axes: Dict[str, List[int]],
gev_param_name_and_axis_to_start_fit: Dict[Tuple[str, int], float] = None):
"""
-Attribute 'gev_param_name_to_linear_axis' maps each GEV parameter to its corresponding function
-Attribute 'gev_param_name_and_axis_to_start_fit' maps each tuple (GEV parameter, axis) to its start value for
fitting (by default equal to 1). Also start value for the intercept is equal to 0 by default."""
super().__init__(coordinates, default_params)
self.gev_param_name_and_axis_to_start_fit = gev_param_name_and_axis_to_start_fit
self.gev_param_name_to_linear_axes = gev_param_name_to_linear_axes
# Check the axes are well-defined with respect to the coordinates
for axes in self.gev_param_name_to_linear_axes.values():
for axis in axes:
assert axis < coordinates.nb_columns, "axis={}, nb_columns={}".format(axis, coordinates.nb_columns)
# Build gev_parameter_to_param_function dictionary
self.gev_param_name_to_param_function = {} # type: Dict[str, ParamFunction]
# Map each gev_param_name to its corresponding param_function
for gev_param_name in GevParams.GEV_PARAM_NAMES:
# By default, if gev_param_name linear_axis is not specified, a constantParamFunction is chosen
if gev_param_name not in self.gev_param_name_to_linear_axes.keys():
param_function = ConstantParamFunction(constant=self.default_params[gev_param_name])
# Otherwise, we fit a LinearParamFunction
else:
param_function = LinearParamFunction(linear_axes=self.gev_param_name_to_linear_axes[gev_param_name],
coordinates=self.coordinates.coordinates_values,
start=self.default_params[gev_param_name])
# Some check on the Linear param function
if gev_param_name == GevParams.GEV_SCALE:
assert param_function.end > 0 and param_function.start > 0, \
'Impossible start/end value for Scale parameter'
# Add the param_function to the dictionary
self.gev_param_name_to_param_function[gev_param_name] = param_function
@property
def fit_marge_form_dict(self) -> dict:
"""
Example of formula that could be specified:
loc.form = loc ~ coord_x
scale.form = scale ~ coord_y
shape.form = shape ~ coord_x+coord_y
:return:
"""
fit_marge_form_dict = {}
axis_to_name = {i: name for i, name in enumerate(AbstractCoordinates.COORDINATE_NAMES)}
for gev_param_name in GevParams.GEV_PARAM_NAMES:
axes = self.gev_param_name_to_linear_axes.get(gev_param_name, None)
formula_str = '1' if axes is None else '+'.join([axis_to_name[axis] for axis in axes])
fit_marge_form_dict[gev_param_name + '.form'] = gev_param_name + ' ~ ' + formula_str
return fit_marge_form_dict
@property
def margin_start_dict(self) -> dict:
# Define default values
default_start_fit_coef = 1.0
default_start_fit_intercept = 0.0
# Build the dictionary containing all the parameters
margin_start_dict = {}
for gev_param_name in GevParams.GEV_PARAM_NAMES:
coef_template_str = gev_param_name + 'Coeff{}'
# Constant param must be specified for all the parameters
margin_start_dict[coef_template_str.format(1)] = default_start_fit_intercept
for j, axis in enumerate(self.gev_param_name_to_linear_axes.get(gev_param_name, []), 2):
if self.gev_param_name_and_axis_to_start_fit is None:
coef = default_start_fit_coef
else:
coef = self.gev_param_name_and_axis_to_start_fit.get((gev_param_name, axis), default_start_fit_coef)
margin_start_dict[coef_template_str.format(j)] = coef
return margin_start_dict
from typing import Dict, List, Tuple
from extreme_estimator.extreme_models.margin_model.margin_function.independent_margin_function import \
IndependentMarginFunction
from extreme_estimator.extreme_models.margin_model.param_function.linear_coef import LinearCoef
from extreme_estimator.extreme_models.margin_model.param_function.param_function import ConstantParamFunction, \
ParamFunction, LinearParamFunction
from extreme_estimator.gev_params import GevParams
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
class LinearMarginFunction(IndependentMarginFunction):
""" Margin Function, where each parameter can augment linearly along any dimension.
dim = 0 correspond to the intercept
dim = 1 correspond to the coordinate X
dim = 2 correspond to the coordinate Y
dim = 3 correspond to the coordinate Z
gev_param_name_to_linear_dims maps each parameter of the GEV distribution to its linear dimensions
gev_param_name_to_linear_coef maps each parameter of the GEV distribution to its linear coefficients
gev_param_name_to_start_fit_linear_coef maps each parameter of the GEV distribution to its starting fitting
value for the linear coefficients
"""
def __init__(self, coordinates: AbstractCoordinates,
gev_param_name_to_linear_dims: Dict[str, List[int]],
gev_param_name_to_linear_coef: Dict[str, LinearCoef]):
super().__init__(coordinates)
self.gev_param_name_to_linear_coef = gev_param_name_to_linear_coef
self.gev_param_name_to_linear_dims = gev_param_name_to_linear_dims
# Build gev_parameter_to_param_function dictionary
self.gev_param_name_to_param_function = {} # type: Dict[str, ParamFunction]
# Check the linear_dim are well-defined with respect to the coordinates
for linear_dims in self.gev_param_name_to_linear_dims.values():
for dim in linear_dims:
assert 0 < dim <= coordinates.nb_columns, "dim={}, nb_columns={}".format(dim, coordinates.nb_columns)
# Map each gev_param_name to its corresponding param_function
for gev_param_name in GevParams.GEV_PARAM_NAMES:
linear_coef = self.gev_param_name_to_linear_coef[gev_param_name]
# By default, if linear_dims are not specified, a constantParamFunction is chosen
if gev_param_name not in self.gev_param_name_to_linear_dims.keys():
param_function = ConstantParamFunction(constant=linear_coef.get_coef(dim=0))
# Otherwise, we fit a LinearParamFunction
else:
param_function = LinearParamFunction(linear_dims=self.gev_param_name_to_linear_dims[gev_param_name],
coordinates=self.coordinates.coordinates_values,
linear_coef=linear_coef)
# Add the param_function to the dictionary
self.gev_param_name_to_param_function[gev_param_name] = param_function
@classmethod
def from_margin_coeff_dict(cls, coordinates, margin_coeff_dict):
pass
@property
def form_dict(self) -> dict:
form_dict = {}
for gev_param_name in GevParams.GEV_PARAM_NAMES:
linear_dims = self.gev_param_name_to_linear_dims.get(gev_param_name, [])
form_dict.update(self.gev_param_name_to_linear_coef[gev_param_name].form_dict(linear_dims=linear_dims))
return form_dict
@property
def coef_dict(self) -> dict:
coef_dict = {}
for gev_param_name in GevParams.GEV_PARAM_NAMES:
linear_dims = self.gev_param_name_to_linear_dims.get(gev_param_name, [])
coef_dict.update(self.gev_param_name_to_linear_coef[gev_param_name].coef_dict(linear_dims=linear_dims))
return coef_dict
from typing import Dict
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
class LinearCoef(object):
"""
Object that maps each dimension to its corresponding coefficient.
dim = 0 correspond to the intercept
dim = 1 correspond to the coordinate X
dim = 2 correspond to the coordinate Y
dim = 3 correspond to the coordinate Z
"""
def __init__(self, gev_param_name: str, default_value: float = 0.0, dim_to_coef: Dict[int, float] = None):
self.gev_param_name = gev_param_name
self.dim_to_coef = dim_to_coef
self.default_value = default_value
def get_coef(self, dim: int) -> float:
if self.dim_to_coef is None:
return self.default_value
else:
return self.dim_to_coef.get(dim, self.default_value)
@property
def intercept(self):
return self.get_coef(dim=0)
@classmethod
def from_dict(cls, coef_dict: Dict[int, float], gev_param_name: str, default_value: float = 0.0):
pass
def coef_dict(self, linear_dims):
coef_dict = {}
coef_template_str = self.gev_param_name + 'Coeff{}'
# Constant param must be specified for all the parameters
coef_dict[coef_template_str.format(1)] = self.intercept
# Specify only the param that belongs to dim_to_coef
for j, dim in enumerate(linear_dims, 2):
coef_dict[coef_template_str.format(j)] = self.dim_to_coef[dim]
return coef_dict
def form_dict(self, linear_dims):
"""
Example of formula that could be specified:
loc.form = loc ~ coord_x
scale.form = scale ~ coord_y
shape.form = shape ~ coord_x+coord_y
:return:
"""
dim_to_name = {i: name for i, name in enumerate(AbstractCoordinates.COORDINATE_NAMES, 1)}
formula_str = '1' if not linear_dims else '+'.join([dim_to_name[dim] for dim in linear_dims])
return {self.gev_param_name + '.form': self.gev_param_name + ' ~ ' + formula_str}
\ No newline at end of file
from typing import List from typing import List
import numpy as np import numpy as np
from extreme_estimator.extreme_models.margin_model.param_function.linear_coef import LinearCoef
class ParamFunction(object): class ParamFunction(object):
...@@ -20,30 +20,33 @@ class ConstantParamFunction(ParamFunction): ...@@ -20,30 +20,33 @@ class ConstantParamFunction(ParamFunction):
class LinearOneAxisParamFunction(ParamFunction): class LinearOneAxisParamFunction(ParamFunction):
def __init__(self, linear_axis: int, coordinates_axis: np.ndarray, start: float, end: float = 0.01): def __init__(self, linear_axis: int, coordinates: np.ndarray, coef: float = 0.01):
self.linear_axis = linear_axis self.linear_axis = linear_axis
self.t_min = coordinates_axis.min() self.t_min = coordinates[:, linear_axis].min()
self.t_max = coordinates_axis.max() self.t_max = coordinates[:, linear_axis].max()
self.start = start self.coef = coef
self.end = end
def get_gev_param_value(self, coordinate: np.ndarray) -> float: def get_gev_param_value(self, coordinate: np.ndarray) -> float:
t = coordinate[self.linear_axis] t = coordinate[self.linear_axis]
t_between_zero_and_one = (t - self.t_min) / (self.t_max - self.t_min) t_between_zero_and_one = t / (self.t_max - self.t_min)
assert 0 <= t_between_zero_and_one <= 1, 'Out of bounds' assert -1 <= t_between_zero_and_one <= 1, 'Out of bounds'
return self.start + t_between_zero_and_one * (self.end - self.start) return t_between_zero_and_one * self.coef
class LinearParamFunction(ParamFunction): class LinearParamFunction(ParamFunction):
def __init__(self, linear_axes: List[int], coordinates: np.ndarray, start: float, end: float = 0.01): def __init__(self, linear_dims: List[int], coordinates: np.ndarray, linear_coef: LinearCoef = None):
self.linear_coef = linear_coef
# Load each one axis linear function
self.linear_one_axis_param_functions = [] # type: List[LinearOneAxisParamFunction] self.linear_one_axis_param_functions = [] # type: List[LinearOneAxisParamFunction]
self.start = start for linear_dim in linear_dims:
self.end = end param_function = LinearOneAxisParamFunction(linear_axis=linear_dim-1, coordinates=coordinates,
for linear_axis in linear_axes: coef=self.linear_coef.get_coef(dim=linear_dim))
param_function = LinearOneAxisParamFunction(linear_axis, coordinates[:, linear_axis], start, end)
self.linear_one_axis_param_functions.append(param_function) self.linear_one_axis_param_functions.append(param_function)
def get_gev_param_value(self, coordinate: np.ndarray) -> float: def get_gev_param_value(self, coordinate: np.ndarray) -> float:
values = [param_funct.get_gev_param_value(coordinate) for param_funct in self.linear_one_axis_param_functions] # Add the intercept and the value with respect to each axis
return float(np.mean(values)) gev_param_value = self.linear_coef.intercept
for linear_one_axis_param_function in self.linear_one_axis_param_functions:
gev_param_value += linear_one_axis_param_function.get_gev_param_value(coordinate)
return gev_param_value
...@@ -2,23 +2,39 @@ import numpy as np ...@@ -2,23 +2,39 @@ import numpy as np
from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \ from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \
AbstractMarginFunction AbstractMarginFunction
from extreme_estimator.extreme_models.margin_model.margin_function.independent_margin_function import \
LinearMarginFunction
from extreme_estimator.extreme_models.margin_model.abstract_margin_model import AbstractMarginModel from extreme_estimator.extreme_models.margin_model.abstract_margin_model import AbstractMarginModel
from extreme_estimator.extreme_models.margin_model.margin_function.linear_margin_function import LinearMarginFunction
from extreme_estimator.extreme_models.margin_model.param_function.linear_coef import LinearCoef
from extreme_estimator.gev_params import GevParams from extreme_estimator.gev_params import GevParams
class LinearMarginModel(AbstractMarginModel): class LinearMarginModel(AbstractMarginModel):
def load_margin_functions(self, gev_param_name_to_linear_axis=None): def load_margin_functions(self, gev_param_name_to_linear_dims=None):
# Load sample coef
self.default_params_sample = GevParams(1.0, 1.0, 1.0).to_dict() self.default_params_sample = GevParams(1.0, 1.0, 1.0).to_dict()
self.default_params_start_fit = GevParams(1.0, 1.0, 1.0).to_dict() linear_coef_sample = self.get_standard_linear_coef(gev_param_name_to_intercept=self.params_sample)
self.margin_function_sample = LinearMarginFunction(coordinates=self.coordinates, self.margin_function_sample = LinearMarginFunction(coordinates=self.coordinates,
default_params=GevParams.from_dict(self.params_sample), gev_param_name_to_linear_coef=linear_coef_sample,
gev_param_name_to_linear_axes=gev_param_name_to_linear_axis) gev_param_name_to_linear_dims=gev_param_name_to_linear_dims)
# Load start fit coef
self.default_params_start_fit = GevParams(1.0, 1.0, 1.0).to_dict()
linear_coef_start_fit = self.get_standard_linear_coef(gev_param_name_to_intercept=self.params_start_fit)
self.margin_function_start_fit = LinearMarginFunction(coordinates=self.coordinates, self.margin_function_start_fit = LinearMarginFunction(coordinates=self.coordinates,
default_params=GevParams.from_dict(self.params_start_fit), gev_param_name_to_linear_coef=linear_coef_start_fit,
gev_param_name_to_linear_axes=gev_param_name_to_linear_axis) gev_param_name_to_linear_dims=gev_param_name_to_linear_dims)
@staticmethod
def get_standard_linear_coef(gev_param_name_to_intercept, slope=0.1):
gev_param_name_to_linear_coef = {}
for gev_param_name in GevParams.GEV_PARAM_NAMES:
dim_to_coef = {dim: slope for dim in range(1, 4)}
dim_to_coef[0] = gev_param_name_to_intercept[gev_param_name]
linear_coef = LinearCoef(gev_param_name=gev_param_name, dim_to_coef=dim_to_coef)
gev_param_name_to_linear_coef[gev_param_name] = linear_coef
return gev_param_name_to_linear_coef
def fitmargin_from_maxima_gev(self, maxima_gev: np.ndarray, coordinates_values: np.ndarray) -> AbstractMarginFunction: def fitmargin_from_maxima_gev(self, maxima_gev: np.ndarray, coordinates_values: np.ndarray) -> AbstractMarginFunction:
return self.margin_function_start_fit return self.margin_function_start_fit
...@@ -26,34 +42,34 @@ class LinearMarginModel(AbstractMarginModel): ...@@ -26,34 +42,34 @@ class LinearMarginModel(AbstractMarginModel):
class ConstantMarginModel(LinearMarginModel): class ConstantMarginModel(LinearMarginModel):
def load_margin_functions(self, gev_param_name_to_linear_axis=None): def load_margin_functions(self, gev_param_name_to_linear_dims=None):
super().load_margin_functions({}) super().load_margin_functions({})
class LinearShapeAxis0MarginModel(LinearMarginModel): class LinearShapeAxis0MarginModel(LinearMarginModel):
def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_axis=None): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None):
super().load_margin_functions({GevParams.GEV_SHAPE: [0]}) super().load_margin_functions({GevParams.GEV_SHAPE: [1]})
class LinearShapeAxis0and1MarginModel(LinearMarginModel): class LinearShapeAxis0and1MarginModel(LinearMarginModel):
def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_axis=None): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None):
super().load_margin_functions({GevParams.GEV_SHAPE: [0, 1]}) super().load_margin_functions({GevParams.GEV_SHAPE: [1, 2]})
class LinearAllParametersAxis0MarginModel(LinearMarginModel): class LinearAllParametersAxis0MarginModel(LinearMarginModel):
def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_axis=None): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None):
super().load_margin_functions({GevParams.GEV_SHAPE: [0], super().load_margin_functions({GevParams.GEV_SHAPE: [1],
GevParams.GEV_LOC: [0], GevParams.GEV_LOC: [1],
GevParams.GEV_SCALE: [0]}) GevParams.GEV_SCALE: [1]})
class LinearAllParametersAllAxisMarginModel(LinearMarginModel): class LinearAllParametersAllAxisMarginModel(LinearMarginModel):
def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_axis=None): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None):
all_axis = list(range(self.coordinates.nb_columns)) all_dims = list(range(1, self.coordinates.nb_columns + 1))
super().load_margin_functions({GevParams.GEV_SHAPE: all_axis.copy(), super().load_margin_functions({GevParams.GEV_SHAPE: all_dims.copy(),
GevParams.GEV_LOC: all_axis.copy(), GevParams.GEV_LOC: all_dims.copy(),
GevParams.GEV_SCALE: all_axis.copy()}) GevParams.GEV_SCALE: all_dims.copy()})
...@@ -20,11 +20,11 @@ rmaxstab2D <- function (n.obs){ ...@@ -20,11 +20,11 @@ rmaxstab2D <- function (n.obs){
print(class(coord)) print(class(coord))
print(colnames(coord)) print(colnames(coord))
loc.form = loc ~ 1 loc.form = loc ~ N
scale.form = scale ~ 1 scale.form = scale ~ 1
shape.form = shape ~ 1 shape.form = shape ~ 1
namedlist = list(cov11 = 1.0, cov12 = 1.2, cov22 = 2.2, locCoeff1=1.0, scaleCoeff1=1.0, shapeCoeff1=1.0) namedlist = list(cov11 = 1.0, cov12 = 1.2, cov22 = 2.2, locCoeff1=1.0, locCoeff2=1.0, scaleCoeff1=1.0, shapeCoeff1=1.0)
res = fitmaxstab(data=data, coord=coord, cov.mod="gauss", start=namedlist, fit.marge=TRUE, loc.form=loc.form, scale.form=scale.form,shape.form=shape.form) res = fitmaxstab(data=data, coord=coord, cov.mod="gauss", start=namedlist, fit.marge=TRUE, loc.form=loc.form, scale.form=scale.form,shape.form=shape.form)
print(res['fitted.values']) print(res['fitted.values'])
} }
...@@ -63,7 +63,7 @@ if (call_main) { ...@@ -63,7 +63,7 @@ if (call_main) {
set.seed(42) set.seed(42)
n.obs = 500 n.obs = 500
rmaxstab2D(n.obs) rmaxstab2D(n.obs)
rmaxstab1D(n.obs) # rmaxstab1D(n.obs)
# namedlist = list(cov11 = 1.0, cov12 = 1.2, cov22 = 2.2) # namedlist = list(cov11 = 1.0, cov12 = 1.2, cov22 = 2.2)
# res = fitmaxstab(data=data, coord=coord, cov.mod="gauss", start=namedlist) # res = fitmaxstab(data=data, coord=coord, cov.mod="gauss", start=namedlist)
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment