• Grelot Frederic's avatar
    catnat, population, clc · 9dbbbaeb
    Grelot Frederic authored
    - catnat dataset remplace gaspar dataset
    	- passage en array pour garder les types d'aléa
    - estimate_catnat_freq incluse dans la librairie
    - population dataset pour la population
    - clc_color dataset pour les couleurs et label de clc
    - map_so_ii inclus population, gère les légendes pour les thèmes
    - dossier script hors librairie por garder la trace des mises à jour des données (doit aller dand floodam.data)
    
    0 errors :heavy_check_mark: | 0 warnings :heavy_check_mark: | 1 note :heavy_multiplication_x:
    Mais la note concerne le temps...
    9dbbbaeb
so_ii_scope.R 2.09 KiB
# code to prepare `so_ii_scope` dataset goes here
so_ii_scope = read.csv2(
    current_version("data-common/so-ii/scope"),
    colClasses = "character"
)[["code"]]
so_ii_scope = sort(so_ii_scope)
# code to prepare `so_ii_commune` dataset goes here
admin_express = current_version("data-common/data/IGN/ADMIN-EXPRESS/version")
selection = c("ID", "NOM", "NOM_M", "INSEE_COM", "STATUT", "POPULATION", "SIREN_EPCI")
so_ii_commune = sf::st_read(file.path(admin_express, "COMMUNE.shp"))[selection]
names(so_ii_commune) = c("id", "commune", "commune_majuscule", "code", "statut", "pop_2021", "epci", "geometry")
rownames(so_ii_commune) = so_ii_commune[["code"]]
so_ii_commune = so_ii_commune[so_ii_scope, ]
# code to prepare `so_ii_limit` dataset goes here
so_ii_limit = sf::st_union(so_ii_commune)
# code to prepare `so_ii_clc` dataset goes here
so_ii_clc = readRDS("data-common/data/so-ii/so-ii_clc.rds")
so_ii_clc = so_ii_clc["code_18"]
names(so_ii_clc) = c("clc_2018", "geometry")
clc_color = data.frame(
    color = scales::alpha(
            "red3",
            "darkolivegreen3",
            "darkgreen",
            "#4C90B4",
            "lightblue"
    label_fr = c(
        "Zone urbaine",
        "Zone agricole",
        "Forêt, zone naturelle",
        "Zone humide",
        "Surface d'eau"
    label_uk = c(
        "Urban area",
        "Agricultural area",
        "Forest, natural area",
        "Humid area",
        "Water surface"
so_ii_clc[["color"]] = as.character(
    cut(
        as.integer(substr(so_ii_clc[["clc_2018"]], 1, 1)), 
        breaks = 5,
        labels = clc_color[["color"]]
# updating datasets
# actual = setwd(file.path(system.file(package = "geau"), ".."))
actual = setwd("geau")
usethis::use_data(so_ii_scope, internal = FALSE, overwrite = TRUE)
usethis::use_data(so_ii_commune, internal = FALSE, overwrite = TRUE)
usethis::use_data(so_ii_limit, internal = FALSE, overwrite = TRUE)
usethis::use_data(so_ii_clc, internal = FALSE, overwrite = TRUE)
usethis::use_data(clc_color, internal = FALSE, overwrite = TRUE)
setwd(actual)
71