An error occurred while loading the file. Please try again.
-
Grelot Frederic authored
Refs #2
f42cae11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
import warnings
from osgeo import gdal
import otbApplication as otb
from theia_picker import TheiaCatalog
from eodag import EODataAccessGateway, setup_logging
from Common.otb_numpy_proc import to_otb_pipeline
import numpy as np
import glob
import os
import xml.etree.ElementTree as et
import zipfile
from osgeo import osr
import datetime
import uuid
import shutil
import errno
from Common.geotools import get_query_bbox, check_extent_overlap
from Common.geometry import get_displacements_to_ref, get_clearest_central_image
def fetch(shp, dt, output_fld, credentials):
bbox = get_query_bbox(shp)
theia = TheiaCatalog(credentials)
features = theia.search(
start_date=dt.split('/')[0],
end_date=dt.split('/')[1],
bbox=bbox,
level='LEVEL2A'
)
lst = ['FRE_B2','FRE_B3','FRE_B4','FRE_B5','FRE_B6','FRE_B7','FRE_B8','FRE_B8A',
'FRE_B11','FRE_B12','EDG_R1','SAT_R1','CLM_R1']
for f in features:
f.download_files(matching=lst, download_dir=output_fld)
return S2TheiaPipeline(output_fld)
def fetch_eodag(shp, dt, output_fld, credentials, only_tiles=None):
bbox = get_query_bbox(shp)
dag = EODataAccessGateway(user_conf_file_path=credentials)
if only_tiles is None:
search_criteria = {
"productType": "S2_MSI_L2A_MAJA",
"start": dt.split('/')[0],
"end": dt.split('/')[1],
"geom": {"lonmin": bbox[0], "latmin": bbox[1], "lonmax": bbox[2], "latmax": bbox[3]}
}
res = dag.search_all(**search_criteria)
ret = dag.download_all(res, outputs_prefix=output_fld, extract=True, delete_archive=True)
else:
for tile in only_tiles:
search_criteria = {
"productType": "S2_MSI_L2A_MAJA",
"start": dt.split('/')[0],
"end": dt.split('/')[1],
"geom": {"lonmin": bbox[0], "latmin": bbox[1], "lonmax": bbox[2], "latmax": bbox[3]},
"tileIdentifier": tile
}
res = dag.search_all(**search_criteria)
ret = dag.download_all(res, outputs_prefix=output_fld, extract=True, delete_archive=True)
for f in ret:
im = glob.glob(f+'/*')[0]
os.rename(im, os.path.join(os.path.dirname(f),os.path.basename(im)))
os.rmdir(f)
return ret
class S2TheiaTilePipeline:
# --- BEGIN SENSOR PROTOTYPE ---
NAME = 'S2-THEIA'
REF_TYPE = otb.ImagePixelType_int16
MSK_TYPE = otb.ImagePixelType_uint8
PTRN_dir = 'SENTINEL2*'
PTRN_ref = '_FRE_'
B2_name = 'B2'
PTRN_10m = ['*_FRE_B2.tif', '*_FRE_B3.tif', '*_FRE_B4.tif', '*_FRE_B8.tif']
PTRN_20m = ['*_FRE_B5.tif', '*_FRE_B6.tif', '*_FRE_B7.tif', '*_FRE_B8A.tif', '*_FRE_B11.tif', '*_FRE_B12.tif']
PTRN_msk = ['MASKS/*_EDG_R1.tif', 'MASKS/*_SAT_R1.tif', 'MASKS/*_CLM_R1.tif']
MERG_msk = ['min', 'min', 'max']
PTRN_ful = PTRN_10m[0:3] + PTRN_20m[0:3] + [PTRN_10m[3]] + PTRN_20m[3:]
FEAT_exp = {
'B2': 'im1b1',
'B3': 'im1b2',
'B4': 'im1b3',
'B5': 'im1b4',
'B6': 'im1b5',
'B7': 'im1b6',
'B8': 'im1b7',
'B8A': 'im1b8',
'B11': 'im1b9',
'B12': 'im1b10',
'NDVI': '(im1b7-im1b3)/(im1b7+im1b3+1e-6)',
'NDWI': '(im1b2-im1b7)/(im1b2+im1b7+1e-6)',
'BRI': 'sqrt(' + '+'.join(['im1b%d*im1b%d' % (i, i) for i in range(1, 11)]) + ')',
'MNDWI': '(im1b2-im1b9)/(im1b2+im1b9+1e-6)',
'SWNDVI': '(im1b9-im1b7)/(im1b9+im1b7+1e-6)',
'NDRE': '(im1b7-im1b4)/(im1b7+im1b4+1e-6)'
}
NDT = -10000
@classmethod
def _check(cls,x):
return cls.PTRN_dir.replace('*', '') in os.path.basename(x)
@classmethod
def _img_id(cls,x):
if cls._check(x):
if os.path.isdir(x):
return x.split('_')[-5]
elif os.path.splitext(x)[-1] == '.zip':
return x.split('_')[-4]
else:
return None
else:
return None
@classmethod
def _img_date(cls,x):
if cls._check(x):
if os.path.isdir(x):
return x.split('_')[-5].split('-')[0]
elif os.path.splitext(x)[-1] == '.zip':
return x.split('_')[-4].split('-')[0]
else:
return None
else:
return None
@classmethod
def _tile_id(cls,x):
if cls._check(x):
if os.path.isdir(x):
return x.split('_')[-3]
elif os.path.splitext(x)[-1] == '.zip':
return x.split('_')[-2]
else:
return None
else:
return None
@classmethod
def _tile_cloud_percentage(cls, x):
if cls._check(x):
if os.path.isdir(x):
fid = open(glob.glob(os.path.join(x, '*_MTD_ALL.xml'))[0], 'r')
mtd = fid.read()
elif os.path.splitext(x)[-1] == '.zip':
arch = zipfile.ZipFile(x)
fid = [name for name in arch.namelist() if name.endswith('_MTD_ALL.xml')]
mtd = arch.read(fid[0])
root = et.fromstring(mtd)
f = filter(lambda x: x.get('name') == 'CloudPercent', root.findall('*/*/*/*/*/*'))
r = list(f)
return float(r[0].text)
@classmethod
def _check_roi(cls, x, roi, min_surf=0.0, temp_fld='/tmp'):
if cls._check(x):
if os.path.isdir(x):
bnd = glob.glob(os.path.join(x, cls.PTRN_20m[0]))[0]
elif os.path.splitext(x)[-1] == '.zip':
idf = cls.PTRN_20m[0].replace('*', '')
arch = zipfile.ZipFile(x)
fid = [name for name in arch.namelist() if idf in name]
fle = arch.read(fid[0])
bnd = os.path.join(temp_fld, os.path.basename(fid[0]))
tgt = open(bnd, 'wb')
with fle,tgt:
shutil.copyfileobj(fle, tgt)
if not check_extent_overlap(bnd, roi):
return False
er = otb.Registry.CreateApplication('ExtractROI')
er.SetParameterString('in', bnd)
er.SetParameterString('mode', 'fit')
er.SetParameterString('mode.fit.vect', roi)
er.Execute()
arr = er.GetImageAsNumpyArray('out')
if (np.sum(arr != cls.NDT) / (arr.shape[0]*arr.shape[1])) <= min_surf:
return False
else:
return True
def _process_mask(self, msks):
msk_pipe = [otb.Registry.CreateApplication('BandMath')]
[msk_pipe[-1].AddImageToParameterInputImageList('il', x.GetParameterOutputImage('out')) for x in
msks]
msk_pipe[-1].SetParameterString('exp', 'im1b1!=0 || im2b1!=0 || im3b1!=0')
msk_pipe[-1].Execute()
return msk_pipe
# ---- END SENSOR PROTOTYPE ----
def __init__(self, fld, tile, temp_fld='/tmp', input_date_interval=None, max_clouds_percentage=None,
filter_by_roi=None, roi_min_surf=0.0, dummy_read=False):
self.pipe = []
self.files = []
self.types = []
self.out_p = []
self.out_idx = []
self.id = str(uuid.uuid4())
self.folder = os.path.abspath(fld)
self.tile_id = tile
self.temp_fld = temp_fld + os.sep + self.id
self.image_list = self.parse_folder(self.folder, self.tile_id)
self.pipe_start = 0
if len(self.image_list) > 0:
self.tile_id = self._tile_id(self.image_list[0])
self.input_dates = [self._img_date(x) for x in self.image_list]
self.tile_cloud_percentage = []
if input_date_interval is not None:
idx = [i for i in range(len(self.input_dates)) if self.input_dates[i]>=input_date_interval[0] and self.input_dates[i]<=input_date_interval[1]]
self.image_list = [self.image_list[i] for i in idx]
self.input_dates = [self.input_dates[i] for i in idx]
if dummy_read:
self.check_for_completeness()
else:
if filter_by_roi is not None:
assert(os.path.exists(filter_by_roi))
idx = [i for i in range(len(self.input_dates)) if self._check_roi(self.image_list[i], filter_by_roi, roi_min_surf)]
self.image_list = [self.image_list[i] for i in idx]
self.input_dates = [self.input_dates[i] for i in idx]
if max_clouds_percentage is not None:
self.tile_cloud_percentage = [self._tile_cloud_percentage(x) for x in self.image_list]
idx = [i for i in range(len(self.input_dates)) if self.tile_cloud_percentage[i] <= max_clouds_percentage]
self.image_list = [self.image_list[i] for i in idx]
self.input_dates = [self.input_dates[i] for i in idx]
self.tile_cloud_percentage = [self.tile_cloud_percentage[i] for i in idx]
if len(self.image_list) > 0:
self.set_input_epsg()
self.output_epsg = self.input_epsg
self.output_dates = self.input_dates
for img in self.image_list:
for p in self.PTRN_ful:
ifn, ofn = self.get_file(img, p)
self.append(to_otb_pipeline(ifn), ofn, self.REF_TYPE, 'out', is_output=True)
for p in self.PTRN_msk:
ifn, ofn = self.get_file(img, p)
self.append(to_otb_pipeline(ifn), ofn, self.MSK_TYPE, 'out', is_output=True)
else:
warnings.warn('Empty pipeline after filtering for tile {}.'.format(self.tile_id))
else:
warnings.warn('Empty pipeline at init. Need to set preprocessed inputs?')
def __del__(self):
if os.path.exists(self.temp_fld):
shutil.rmtree(self.temp_fld)
def is_empty(self):
return len(self.image_list) == 0
def reset(self):
self.pipe = []
self.files = []
self.types = []
self.out_p = []
self.out_idx = []
self.pipe_start = 0
for img in self.image_list:
for p in self.PTRN_ful:
ifn, ofn = self.get_file(img, p)
self.append(to_otb_pipeline(ifn), ofn, self.REF_TYPE, 'out', is_output=True)
for p in self.PTRN_msk:
ifn, ofn = self.get_file(img, p)
self.append(to_otb_pipeline(ifn), ofn, self.MSK_TYPE, 'out', is_output=True)
def check_for_completeness(self):
ok = True
for img in self.image_list:
for p in self.PTRN_ful:
ftc = glob.glob(os.path.join(img, p))
ok = ok and len(ftc) > 0
if not ok:
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), os.path.join(img, p))
for p in self.PTRN_msk:
ftc = glob.glob(os.path.join(img, p))
ok = ok and len(ftc) > 0
if not ok:
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), os.path.join(img, p))
return ok
def get_file(self, img, ptrn):
in_fn, out_fn = None, None
if os.path.isdir(img):
in_fn = glob.glob(os.path.join(img, ptrn))[0]
out_fn = in_fn.replace(self.folder, '').lstrip(os.sep)
elif os.path.splitext(img)[-1] == '.zip':
z = zipfile.ZipFile(img)
out_fn = [x for x in z.namelist() if ptrn.split(os.sep)[-1].replace('*','') in x][0]
in_fn = os.sep + 'vsizip' + os.sep + os.path.abspath(img) + os.sep + out_fn
return in_fn, os.path.splitext(self.tile_id + os.sep + out_fn)[0] + '.tif'
def parse_folder(self, fld, tile):
img_list = [os.path.abspath(x) for x in glob.glob(os.path.join(fld, self.PTRN_dir))
if os.path.isdir(x) and self._tile_id(x) == tile]
zip_list = [os.path.abspath(x) for x in glob.glob(os.path.join(fld, self.PTRN_dir))
if os.path.splitext(x)[-1] == '.zip' and self._tile_id(x) == tile]
im_dict = {}
for i in img_list:
im_dict[self._img_id(i)] = i
for i in zip_list:
if self._img_id(i) not in im_dict.keys():
im_dict[self._img_id(i)] = i
return sorted(im_dict.values(), key=lambda x: self._img_id(x))
def merge_same_dates(self):
to_merge, curr = [], [0]
i = 1
while i < len(self.input_dates):
if self.input_dates[i] == self.input_dates[i-1]:
curr.append(i)
else:
to_merge.append(curr)
curr = [i]
i += 1
to_merge.append(curr)
T = 10 + len(self.PTRN_msk)
new_dates = []
proc_idx = self.out_idx.copy()
self.out_idx = []
self.pipe_start = len(self.pipe)
for l in to_merge:
if len(l) == 1:
for k in range(T):
idx = T*l[0]+k
self.append(self.pipe[idx], self.files[idx], self.types[idx], 'out', is_output=True)
else:
for k in range(10):
mos = otb.Registry.CreateApplication('Mosaic')
for i in l:
mos.AddImageToParameterInputImageList('il', self.pipe[T*i+k].GetParameterOutputImage(self.out_p[T*i+k]))
mos.SetParameterInt('nodata', self.NDT)
mos.Execute()
self.append(mos, self.files[T*i+k], self.types[T*i+k], 'out', is_output=True)
for k in range(10,T):
bm = otb.Registry.CreateApplication('BandMath')
for i in l:
bm.AddImageToParameterInputImageList('il', self.pipe[T*i+k].GetParameterOutputImage(self.out_p[T*i+k]))
bm.SetParameterString('exp', self.MERG_msk[k-10] + '({})'.format(','.join(['im{}b1'.format(w+1) for w in range(len(l))])))
bm.Execute()
self.append(bm, self.files[T * i + k], self.types[T * i + k], 'out', is_output=True)
new_dates.append(self.input_dates[l[-1]])
if self.output_dates == self.input_dates:
self.output_dates = new_dates.copy()
self.input_dates = new_dates.copy()
return
def get_coverage(self):
proc_idx = self.out_idx.copy()
proc_idx = proc_idx[1::2]
cc = []
from tqdm import tqdm
for t in proc_idx:
arr = self.pipe[t].GetImageAsNumpyArray('out', otb.ImagePixelType_uint8)
cc.append(np.sum(arr)/(arr.shape[0]*arr.shape[1]))
self.pipe[t].FreeRessources()
arr = None
return cc
def set_input_epsg(self):
f, _ = self.get_file(self.image_list[0], self.PTRN_20m[0])
ds = gdal.Open(f)
self.input_epsg = osr.SpatialReference(wkt=ds.GetProjection()).GetAuthorityCode('PROJCS')
ds = None
def append(self, app, fname=None, ftype=None, outp=None, is_output=False):
if is_output:
self.out_idx.append(len(self.pipe))
self.pipe.append(app)
self.files.append(fname)
self.types.append(ftype)
self.out_p.append(outp)
def clip(self, roi):
assert(os.path.exists(roi))
proc_idx = self.out_idx.copy()
self.out_idx = []
self.pipe_start = len(self.pipe)
for t in proc_idx:
er = otb.Registry.CreateApplication('ExtractROI')
er.SetParameterInputImage('in', self.pipe[t].GetParameterOutputImage(self.out_p[t]))
er.SetParameterString('mode', 'fit')
er.SetParameterString('mode.fit.vect', roi)
er.Execute()
fn = self.files[t]
ty = self.types[t]
self.append(er, fn, ty, 'out', is_output=True)
def preprocess(self):
proc_idx = self.out_idx.copy()
self.out_idx = []
num_of_mask_inputs = len(self.PTRN_msk)
for t in proc_idx[::10+num_of_mask_inputs]:
idx_to_stack = []
for k in range(t,t+10):
if k % (10 + num_of_mask_inputs) in [3, 4, 5, 7, 8, 9]:
si = otb.Registry.CreateApplication('Superimpose')
si.SetParameterInputImage('inm', self.pipe[k].GetParameterOutputImage('out'))
si.SetParameterInputImage('inr', self.pipe[t].GetParameterOutputImage('out'))
si.Execute()
self.append(si)
cr = otb.Registry.CreateApplication('BandMath')
cr.AddImageToParameterInputImageList('il', self.pipe[-1].GetParameterOutputImage('out'))
cr.SetParameterString('exp', '(im1b1 < 0 && im1b1 !=' + str(self.NDT) + ') ? 0 : im1b1')
cr.Execute()
self.append(cr)
idx_to_stack.append(len(self.pipe)-1)
else:
idx_to_stack.append(k)
cct = otb.Registry.CreateApplication('ConcatenateImages')
[cct.AddImageToParameterInputImageList('il', self.pipe[j].GetParameterOutputImage('out')) for j in idx_to_stack]
cct.Execute()
fn = self.files[t].replace(self.B2_name, 'STACK')
ty = self.REF_TYPE
self.append(cct, fn, ty, 'out', is_output=True)
msks = self.pipe[t+10:t+10+num_of_mask_inputs]
msk_pipe = self._process_mask(msks)
for app in msk_pipe[:-1]:
self.append(app)
fn = self.files[t].replace(self.B2_name, 'BINARY_MASK')
ty = self.MSK_TYPE
self.append(msk_pipe[-1], fn, ty, 'out', is_output=True)
def write_src_quicklooks(self, fld, bnds = [3,2,1], scale_factor=0.2):
proc_idx = self.out_idx.copy()
fns = [fld + os.sep + self.NAME + '_' + self._img_id(x) + '.png' for x in self.image_list]
for t,m in zip(proc_idx[::2],proc_idx[1::2]):
rt = otb.Registry.CreateApplication('RigidTransformResample')
rt.SetParameterInputImage('in', self.pipe[t].GetParameterOutputImage('out'))
rt.SetParameterFloat('transform.type.id.scalex', scale_factor)
rt.SetParameterFloat('transform.type.id.scaley', scale_factor)
rt.Execute()
rtm = otb.Registry.CreateApplication('RigidTransformResample')
rtm.SetParameterInputImage('in', self.pipe[m].GetParameterOutputImage('out'))
rtm.SetParameterFloat('transform.type.id.scalex', scale_factor)
rtm.SetParameterFloat('transform.type.id.scaley', scale_factor)
rtm.SetParameterString('interpolator', 'nn')
rtm.Execute()
bmm = otb.Registry.CreateApplication('BandMath')
bmm.AddImageToParameterInputImageList('il', rtm.GetParameterOutputImage('out'))
bmm.SetParameterString('exp', '1 - im1b1')
if not os.path.exists(self.temp_fld):
os.makedirs(self.temp_fld)
bmm.SetParameterString('out', self.temp_fld + os.sep + 'msk.tif')
bmm.ExecuteAndWriteOutput()
dc = otb.Registry.CreateApplication('DynamicConvert')
dc.SetParameterInputImage('in', rt.GetParameterOutputImage('out'))
dc.SetParameterString('mask', self.temp_fld + os.sep + 'msk.tif')
dc.SetParameterString('channels', 'rgb')
dc.SetParameterInt('channels.rgb.red', bnds[0])
dc.SetParameterInt('channels.rgb.green', bnds[1])
dc.SetParameterInt('channels.rgb.blue', bnds[2])
dc.SetParameterString('quantile.high', '2')
dc.SetParameterString('quantile.low', '2')
dc.SetParameterString('outmin', '1')
dc.SetParameterString('outmax', '255')
dc.SetParameterString('out', fns.pop(0))
dc.SetParameterOutputImagePixelType('out', otb.ImagePixelType_uint8)
dc.ExecuteAndWriteOutput()
def reproject(self, epsg):
if epsg != self.input_epsg:
self.output_epsg = epsg
proc_idx = self.out_idx.copy()
self.out_idx = []
i = 0
for t in proc_idx:
rp = otb.Registry.CreateApplication('OrthoRectification')
rp.SetParameterInputImage('io.in', self.pipe[t].GetParameterOutputImage('out'))
rp.SetParameterString('map', 'epsg')
rp.SetParameterString('map.epsg.code', self.output_epsg)
rp.SetParameterString('opt.gridspacing', '40')
if i % 2 == 0:
rp.SetParameterString('outputs.default', str(self.NDT))
fn = self.files[t].replace('_STACK.tif', '_STACK_' + self.output_epsg + '.tif')
ty = self.REF_TYPE
else:
rp.SetParameterString('interpolator', 'nn')
fn = self.files[t].replace('_BINARY_MASK.tif', '_BINARY_MASK_' + self.output_epsg + '.tif')
ty = self.MSK_TYPE
rp.Execute()
self.append(rp, fn, ty, 'io.out', is_output=True)
i += 1
def coregister(self, ref_img, ref_bnd, tgt_bnd, out_fld=None):
# PointMatchCoregistration is a pipeline-breaking app
# Need to write outputs, compute coregistered and write again
# Then update pipeline
to_del = self.write_outputs(self.temp_fld, update_pipe=True)
proc_idx = self.out_idx.copy()
self.out_idx = []
i = 0
curr_json = ''
for t in proc_idx:
cr = otb.Registry.CreateApplication('PointMatchCoregistration')
cr.SetParameterInputImage('in', self.pipe[t].GetParameterOutputImage('out'))
cr.SetParameterInt('fallback', 1)
if (i % 2) == 0:
curr_json = os.path.splitext(self.files[t])[0] + '.json'
curr_json = os.path.join(self.temp_fld, curr_json)
cr.SetParameterInt('band', tgt_bnd)
cr.SetParameterString('inref', ref_img)
cr.SetParameterInt('bandref', ref_bnd)
cr.SetParameterString('outjson', curr_json)
fn = self.files[t].replace('_STACK.tif', '_STACK_COREG.tif')
ty = self.REF_TYPE
else:
cr.SetParameterString('inmodel', curr_json)
cr.SetParameterString('interpolator', 'nn')
fn = self.files[t].replace('_BINARY_MASK.tif', '_BINARY_MASK_COREG.tif')
ty = self.MSK_TYPE
self.append(cr, fn, ty, 'out', is_output=True)
i += 1
if out_fld is None:
out_fld = self.temp_fld
self.write_outputs(out_fld, update_pipe=True, flag_nodata=True)
def rigid_align(self, ext_ref=None, ref_date=None, cov_th=0.8, match_band=2, ext_band=0,
geobin_radius=32, num_geobins=128, margin=32, filter=5, out_param='out'):
proc_idx = self.out_idx.copy()
self.out_idx = []
img = [self.pipe[t] for t in range(self.pipe_start+match_band,
self.pipe_start+(10+len(self.PTRN_msk))*len(self.input_dates),
10+len(self.PTRN_msk))]
msk = [self.pipe[t] for t in proc_idx[1::2]]
RX, RY = img[0].GetImageSpacing(out_param)
ref_idx = None
etx_ref_si = None
if ext_ref is None:
if ref_date is None:
ref_idx = get_clearest_central_image(msk, self.input_dates, cov_th)
else:
dts = [datetime.datetime.strptime(x, '%Y%m%d') for x in self.input_dates]
ctr = datetime.datetime.strptime(ref_date, '%Y%m%d')
ref_idx = dts.index(min(dts, key=lambda x: abs(ctr - x)))
shifts = get_displacements_to_ref(img, msk, ref_mode="index", ref_idx=ref_idx, band=0,
out_param=out_param, geobin_radius=geobin_radius,
num_geobins=num_geobins, margin=margin, filter=filter)
else:
assert(os.path.exists(ext_ref))
ext_ref_si = otb.Registry.CreateApplication("Superimpose")
ext_ref_si.SetParameterInputImage('inr', self.pipe[proc_idx[0]].GetParameterOutputImage(self.out_p[proc_idx[0]]))
ext_ref_si.SetParameterString('inm', ext_ref)
ext_ref_si.Execute()
ext_msk_si = otb.Registry.CreateApplication("BandMath")
ext_msk_si.AddImageToParameterInputImageList('il', ext_ref_si.GetParameterOutputImage('out'))
ext_msk_si.SetParameterString('exp', 'im1b1 != im1b1') # To create a mask of zeros...
ext_msk_si.Execute()
shifts = get_displacements_to_ref(img, msk, ref_mode="external", ref_ext=ext_ref_si, ref_ext_msk=ext_msk_si,
band=0, ext_band=ext_band, out_param=out_param,
geobin_radius=geobin_radius, num_geobins=num_geobins,
margin=margin, filter=filter)
k = 0
for i in proc_idx:
if ((i - proc_idx[0]) % 2) == 0:
rt = otb.Registry.CreateApplication('RigidTransformResample')
rt.SetParameterInputImage('in', self.pipe[i].GetParameterOutputImage(self.out_p[i]))
rt.SetParameterString('transform.type', 'translation')
rt.SetParameterFloat('transform.type.translation.tx', RX*shifts[k][1])
rt.SetParameterFloat('transform.type.translation.ty', RY*shifts[k][0])
rt.SetParameterString('interpolator', 'linear')
rt.Execute()
fn = self.files[i].replace('FRE_STACK', 'FRE_STACK_ALIGNED')
ty = self.types[i]
self.append(rt, fn, ty, 'out', is_output=True)
else:
rt = otb.Registry.CreateApplication('RigidTransformResample')
rt.SetParameterInputImage('in', self.pipe[i].GetParameterOutputImage(self.out_p[i]))
rt.SetParameterString('transform.type', 'translation')
rt.SetParameterFloat('transform.type.translation.tx', RX*shifts[k][1])
rt.SetParameterFloat('transform.type.translation.ty', RY*shifts[k][0])
rt.SetParameterString('interpolator', 'nn')
rt.Execute()
fn = self.files[i].replace('BINARY_MASK', 'BINARY_MASK_ALIGNED')
ty = self.types[i]
self.append(rt, fn, ty, 'out', is_output=True)
k += 1
return
def parse_dates(self, fn):
with open(fn) as f:
return [l for l in f.read().splitlines() if l]
def skip_gapfill(self):
proc_idx = self.out_idx.copy()
self.out_idx = []
for t in proc_idx[::2]:
self.append(self.pipe[t], self.files[t], self.types[t], 'out', is_output=True)
return
def gapfill(self, output_dates=None, on_disk=False):
#assert(os.path.exists(output_dates))
proc_idx = self.out_idx.copy()
self.out_idx = []
stk = otb.Registry.CreateApplication('ConcatenateImages')
[stk.AddImageToParameterInputImageList('il', self.pipe[x].GetParameterOutputImage(self.out_p[x])) for x in proc_idx[::2]]
stk.Execute()
self.append(stk)
mst = otb.Registry.CreateApplication('ConcatenateImages')
[mst.AddImageToParameterInputImageList('il', self.pipe[x].GetParameterOutputImage(self.out_p[x])) for x in proc_idx[1::2]]
mst.Execute()
self.append(mst)
if not os.path.exists(self.temp_fld):
os.makedirs(self.temp_fld)
with open(os.path.join(self.folder, self.tile_id + '_indates.txt'), 'w') as df:
[df.write(x + '\n') for x in self.input_dates]
if output_dates is not None:
od = self.parse_dates(output_dates)
self.output_dates = od
else:
output_dates = os.path.join(self.folder, self.tile_id + '_indates.txt')
od = self.input_dates
self.output_dates = od
gf = otb.Registry.CreateApplication('ImageTimeSeriesGapFilling')
gf.SetParameterInputImage('in', self.pipe[-2].GetParameterOutputImage('out'))
gf.SetParameterInputImage('mask', self.pipe[-1].GetParameterOutputImage('out'))
gf.SetParameterInt('comp', 10)
gf.SetParameterString('it', 'linear')
gf.SetParameterString('id', os.path.join(self.folder, self.tile_id + '_indates.txt'))
gf.SetParameterString('od', output_dates)
if not on_disk:
gf.Execute()
gf_out = gf
else:
gf_fn = self.temp_fld + os.sep + 'SENTINEL2_' + self.tile_id + '_GAPFILLED_FULL.tif'
if not os.path.exists(gf_fn):
gf.SetParameterString("out", gf_fn)
gf.ExecuteAndWriteOutput()
gf_out = to_otb_pipeline(gf_fn)
self.append(gf_out)
t = 1
for d in od:
ch_list = ['Channel%d' % i for i in range(t,t+10)]
t += 10
er = otb.Registry.CreateApplication('ExtractROI')
er.SetParameterInputImage('in', gf_out.GetParameterOutputImage('out'))
er.UpdateParameters()
er.SetParameterStringList('cl', ch_list)
er.Execute()
dn = 'SENTINEL2_' + self.tile_id + '_GAPFILL_' + d
fn = self.tile_id + os.sep + dn + os.sep + dn + '_STACK.tif'
ty = self.REF_TYPE
self.append(er, fn, ty, 'out', is_output=True)
def generate_feature_stack(self, feat_list=None):
proc_idx = self.out_idx.copy()
self.out_idx = []
exp_list = self.FEAT_exp.values()
stack_name = 'FEAT'
if feat_list is not None:
exp_list = [self.FEAT_exp[x] for x in feat_list]
stack_name = '_'.join(feat_list)
for t in proc_idx:
bm = otb.Registry.CreateApplication('BandMathX')
bm.AddImageToParameterInputImageList('il', self.pipe[t].GetParameterOutputImage('out'))
bm.SetParameterString('exp', '{' + ';'.join(exp_list) + '}')
bm.Execute()
fn = self.files[t].replace('_STACK.tif', '_' + stack_name + '.tif')
ty = otb.ImagePixelType_float
self.append(bm, fn, ty, 'out', is_output=True)
return stack_name
def generate_time_series(self, feat_list):
proc_idx = self.out_idx.copy()
self.out_idx = []
for feat in feat_list:
bm = otb.Registry.CreateApplication('BandMathX')
i = 1
expr = []
for t in proc_idx:
expr.append(self.FEAT_exp[feat].replace('im1', 'im%d' % i))
bm.AddImageToParameterInputImageList('il', self.pipe[t].GetParameterOutputImage('out'))
i += 1
bm.SetParameterString('exp', '{' + ';'.join(expr) + '}')
bm.Execute()
fn = self.tile_id + os.sep + 'SENTINEL2_' + self.tile_id + '_GAPFILL_' + feat + '.tif'
ty = otb.ImagePixelType_float
self.append(bm, fn, ty, 'out', is_output=True)
def set_preprocess_output(self, fld):
lst = self.parse_folder(os.path.join(fld, self.tile_id), self.tile_id)
if len(lst) == len(self.image_list):
self.out_idx = []
for img in lst:
f = glob.glob(os.path.join(img, '*STACK.tif'))[0]
self.append(to_otb_pipeline(f), f, self.REF_TYPE, 'out', is_output=True)
f = glob.glob(os.path.join(img, '*BINARY_MASK.tif'))[0]
self.append(to_otb_pipeline(f), f, self.MSK_TYPE, 'out', is_output=True)
else:
warnings.warn("No matching files found as preprocess output. No modification to pipeline.")
def set_gapfilled_output(self, file_pattern):
lst = sorted(glob.glob(file_pattern))
self.out_idx = []
if len(lst) > 0:
for f in lst:
pf = os.path.join(self.tile_id, os.path.basename(f))
self.append(to_otb_pipeline(f), pf, self.REF_TYPE, 'out', is_output=True)
else:
warnings.warn("No matching files found as preprocess output. No modification to pipeline.")
def write_outputs(self, fld, roi=None, update_pipe=False, compress=False, flag_nodata=False):
out = []
proc_idx = self.out_idx.copy()
if roi is not None:
out_idx_bck = self.out_idx.copy()
pipe_length = len(self.pipe)
self.clip(roi)
proc_idx = self.out_idx.copy()
if update_pipe:
assert roi is None, 'Cannot set output files as pipe input over a ROI, use clip function instead.'
self.out_idx = []
for t in proc_idx:
out_file = os.path.join(fld, self.files[t])
if compress:
out_file += '?gdal:co:compress=deflate'
if not os.path.exists(os.path.dirname(out_file)):
os.makedirs(os.path.dirname(out_file))
self.pipe[t].SetParameterString(self.out_p[t], out_file)
self.pipe[t].SetParameterOutputImagePixelType(self.out_p[t], self.types[t])
self.pipe[t].ExecuteAndWriteOutput()
out.append(out_file)
if update_pipe:
self.append(to_otb_pipeline(out_file), self.files[t], self.types[t], 'out', is_output=True)
if roi is not None:
self.out_idx = out_idx_bck
self.pipe = self.pipe[:pipe_length]
self.files = self.files[:pipe_length]
self.types = self.types[:pipe_length]
self.out_p = self.out_p[:pipe_length]
if flag_nodata:
if isinstance(flag_nodata, bool):
val = self.NDT
elif isinstance(flag_nodata, int) or isinstance(flag_nodata,float):
val = flag_nodata
for f in out:
ds = gdal.Open(f, 1)
for i in range(ds.RasterCount):
ds.GetRasterBand(i+1).SetNoDataValue(val)
ds = None
return out
class S2TheiaPipeline:
S2TilePipeline = S2TheiaTilePipeline
_check = S2TilePipeline._check
_tile_id = S2TilePipeline._tile_id
tiles = []
def __init__(self, fld, temp_fld='/tmp', input_date_interval=None, max_clouds_percentage=None, roi=None):
self.folder = fld
self.temp_fld = temp_fld
self.input_date_interval = input_date_interval
self.max_clouds_percentage = max_clouds_percentage
self.tile_list = set()
self.roi = roi
img_list = [os.path.abspath(x) for x in glob.glob(os.path.join(self.folder, self.S2TilePipeline.PTRN_dir))
if os.path.isdir(x) or os.path.splitext(x)[-1] == '.zip']
[self.tile_list.add(self._tile_id(x)) for x in img_list if self._check(x)]
assert all([self.S2TilePipeline(fld, t, dummy_read=True) for t in self.tile_list])
self.tiles = [self.S2TilePipeline(fld, t, self.temp_fld, self.input_date_interval, self.max_clouds_percentage, filter_by_roi=self.roi) for t in self.tile_list]
self.tiles = [x for x in self.tiles if not x.is_empty()]
self.output_dates = None
if len(self.tiles) > 0:
self.output_epsg = self.tiles[0].input_epsg
else:
warnings.warn('Empty pipeline.')
def __del__(self):
for x in self.tiles:
del x
def set_output_dates_by_file(self, od):
self.output_dates = od
def set_output_dates(self, start, end, step=10):
start_date = datetime.datetime(int(start[0:4]), int(start[4:6]), int(start[6:8]))
end_date = datetime.datetime(int(end[0:4]), int(end[4:6]), int(end[6:8]))
d, st = start_date, datetime.timedelta(step)
tmstp = str(datetime.datetime.timestamp(datetime.datetime.now())).replace('.', '')
ofn = self.temp_fld + os.sep + 's2ppl_' + tmstp + '_output_dates.txt'
with open(ofn, 'w') as f:
while d < end_date:
f.write(d.strftime('%Y%m%d')+'\n')
d += st
self.output_dates = ofn
def set_roi(self, roi):
self.roi = roi
def set_output_epsg(self, epsg):
self.output_epsg = epsg
def extract_feature_set(self, out_fld, feat_list=None, mosaicking=None, store_gapfill=True,
align=False, align_to=None, align_to_band=3, align_using_band=3, output_aligned=None,
warp_to=None, warp_to_band=1, warp_using_band=3, output_warped=None):
out = []
stack_name = ''
if self.output_dates is not None:
for t in self.tiles:
t.preprocess()
if self.roi is not None:
t.clip(self.roi)
if align:
if type(align_to) == str and os.path.exists(align_to):
t.rigid_align(ext_ref=align_to, match_band=align_using_band-1, ext_band=align_to_band-1)
elif type(align_to) == str :
try:
d = datetime.datetime.strptime(align_to, '%Y%m%d')
t.rigid_align(ref_date=align_to, match_band=align_using_band-1)
except:
raise ValueError("Provided string is not a valid date nor a valid file.")
elif align_to is None:
t.rigid_align(match_band=align_using_band-1)
if output_aligned is not None:
if not os.path.exists(output_aligned):
os.makedirs(output_aligned)
t.write_outputs(output_aligned, update_pipe=True, flag_nodata=True)
t.reproject(self.output_epsg)
if warp_to is not None:
t.coregister(warp_to, warp_to_band, warp_using_band, t.temp_fld)
if output_warped is not None:
if not os.path.exists(output_warped):
os.makedirs(output_warped)
t.write_outputs(output_warped, update_pipe=True, flag_nodata=True)
t.gapfill(self.output_dates, store_gapfill)
stack_name = t.generate_feature_stack(feat_list)
out.extend(t.write_outputs(out_fld))
t.reset()
if len(self.tiles) > 1 and mosaicking == 'vrt':
n_dates = len(self.tiles[0].output_dates)
out = [out[i:i+n_dates] for i in range(0,len(out),n_dates)]
out_mos = []
vrtopt = gdal.BuildVRTOptions()
for i in range(n_dates):
fn = out_fld + os.sep + 'SENTINEL2_MOSAIC_GAPFILL_' + self.tiles[0].output_dates[i] + '_' + stack_name + '.vrt'
to_mosaic = [x[i] for x in out]
gdal.BuildVRT(fn, to_mosaic, options=vrtopt)
out_mos.append(fn)
return out_mos
return out
def extract_time_series(self, out_fld, feat_list, mosaicking=None, store_gapfill=False):
out = []
if self.output_dates is not None:
for t in self.tiles:
t.merge_same_dates()
if self.roi is not None:
t.clip(self.roi)
t.preprocess()
t.reproject(self.output_epsg)
t.gapfill(self.output_dates, store_gapfill)
t.generate_time_series(feat_list)
out.append(t.write_outputs(out_fld))
t.reset()
if mosaicking == 'vrt':
out_mos = []
vrtopt = gdal.BuildVRTOptions()
for i in range(len(feat_list)):
fn = out_fld + os.sep + 'SENTINEL2_MOSAIC_GAPFILL_' + feat_list[i] + '.vrt'
to_mosaic = [x[i] for x in out]
gdal.BuildVRT(fn, to_mosaic, options=vrtopt)
out_mos.append(fn)
return out_mos
return out