An error occurred while loading the file. Please try again.
-
Daniel Falster authoredcd38f732
################# FUNCTION TO EXTRACT DECTED OUTLIER AND FORMAT TRY DATA Georges Kunstler
############################################ 14/06/2013
### just testing this out! ##############
### install all unstallled packages
source("R/packages.R")
check_packages(c("MASS", "doParallel","mvoutlier","plyr"))
## outlier detection based on Kattage et al 2011
##' Detection of univar outlier based on method of Kattge et al. 2011
##'
##'
##' @title
##' @param x.na
##' @param log
##' @return TRUE FALSE vector to identify outlier TRUE : outlier
##' @author Kunstler
fun.out.TF2 <- function(x.na, log = TRUE) {
x <- x.na[!is.na(x.na)]
x.num <- (1:length(x.na))[!is.na(x.na)]
TF.vec <- rep(FALSE, length(x.na))
if (log) {
fit.dist <- fitdistr(log10(na.omit(x)), "normal")
high.bound <- fit.dist$estimate["mean"] + 2 * (fit.dist$estimate["sd"] +
fit.dist$sd["sd"])
low.bound <- fit.dist$estimate["mean"] - 2 * (fit.dist$estimate["sd"] + fit.dist$sd["sd"])
TF.vec[x.num[log10(x) > high.bound | log10(x) < low.bound]] <- TRUE
} else {
fit.dist <- fitdistr((na.omit(x)), "normal")
high.bound <- fit.dist$estimate["mean"] + 2 * (fit.dist$estimate["sd"] +
fit.dist$sd["sd"])
low.bound <- fit.dist$estimate["mean"] - 2 * (fit.dist$estimate["sd"] + fit.dist$sd["sd"])
TF.vec[x.num[(x) > high.bound | (x) < low.bound]] <- TRUE
}
return((TF.vec))
}
######################## FUNCTION TO COMPUTE QUANTILE FOR HEIGHT
f.quantile <- function(x, ind, probs) {
quantile(x[ind], probs = probs, na.rm = TRUE)
}
f.quantile.boot2 <- function(x, R, probs = 0.99) {
require(boot, quietly=TRUE)
if (length(na.exclude(x)) > 0) {
quant.boot <- boot(x, f.quantile, R = R, probs = probs)
return(c(mean = mean(quant.boot$t), sd = sd(quant.boot$t), nobs = length(na.exclude(x))))
} else {
return(c(mean = NA, sd = NA, nobs = NA))
}
}
##################### FUNcCTION TO COMPUTE MEAN SD AND NOBS WITH OR WITHOUT OUTLIER
fun.mean.sd.nobs.out <- function(x, i) {
if (length(x) > 50) {
## if more than 50 obs remove outlier
outlier <- fun.out.TF2(x.na = x, log = TRUE)
if (i == "StdValue.Plant.height.vegetative") {
res.temp <- f.quantile.boot2(log10(x[!outlier]), R = 1000, probs = 0.99)
} else {
res.temp <- c(mean(log10(x[!outlier])), sd(log10(x[!outlier])), length(x[!outlier]))
}
} else {
if (i == "StdValue.Plant.height.vegetative") {
res.temp <- f.quantile.boot2(log10(x), R = 1000, probs = 0.99)
} else {
res.temp <- c(mean(log10(x)), sd(log10(x)), length(x))
}
}
return(res.temp)
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
}
################################### extract mean sd per species or genus added species synonyme
fun.species.traits <- function(species.code, species.table, col.sp = "sp", col.sp.syno = "Latin_name_syn",
traits, data) {
vec.mean <- vec.sd <- vec.nobs <- rep(NA, length(traits))
vec.exp <- vec.genus <- rep(FALSE, length(traits))
names(vec.mean) <- names(vec.sd) <- names(vec.exp) <- names(vec.genus) <- names(vec.nobs) <- traits
species.syno <- species.table[species.table[[col.sp]] == species.code, col.sp.syno]
# browser()
for (i in traits) {
if (sum((data$Latin_name%in% species.syno) & !is.na(data[[i]])) > 0) {
## if data for this species or syno if data with out experiments
if (sum((data$Latin_name %in% species.syno) & (!is.na(data[[i]])) &
(!data[["TF.exp.data"]])) > 0) {
x <- data[[i]][data$Latin_name %in% species.syno & (!is.na(data[[i]])) &
(!data[["TF.exp.data"]])]
res.temp <- fun.mean.sd.nobs.out(x, i)
vec.mean[[i]] <- res.temp[1]
vec.sd[[i]] <- res.temp[2]
vec.nobs[[i]] <- res.temp[3]
} else {
### include experimental data
x <- data[[i]][data$Latin_name %in% species.syno & (!is.na(data[[i]]))]
res.temp <- fun.mean.sd.nobs.out(x, i)
vec.mean[[i]] <- res.temp[1]
vec.sd[[i]] <- res.temp[2]
vec.nobs[[i]] <- res.temp[3]
vec.exp[[i]] <- TRUE
}
} else {
### compute data at genus level if no data for the species
genus <- unique(sub(" .*", "", species.syno))
if (sum(grepl(genus, data$Latin_name) & (!is.na(data[[i]]))) > 0) {
x <- data[[i]][grepl(genus, data$Latin_name, fixed = TRUE) &
(!is.na(data[[i]]))]
res.temp <- fun.mean.sd.nobs.out(x, i)
vec.mean[[i]] <- res.temp[1]
vec.sd[[i]] <- res.temp[2]
vec.nobs[[i]] <- res.temp[3]
vec.genus[[i]] <- TRUE
}
}
}
return(list(mean = vec.mean, sd = vec.sd, exp = vec.exp, genus = vec.genus, nobs = vec.nobs))
}
####################### FUNCTIONS TO Manipulate species names
fun.get.genus <- function(x) gsub(paste(" ", gsub("^([a-zA-Z]* )", "", x), sep = ""),
"", x, fixed = TRUE)
trim.trailing <- function(x) sub("\\s+$", "", x)
#################################################################################
####################################### FUN TO EXTRACT FOR A GIVEN DATA BASE
### function top turn teh result of lapply from a list to a data frame with good structure
fun.turn.list.in.DF <- function(sp, res.list) {
data.mean <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$mean, res.list = res.list))
data.sd <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$sd, res.list = res.list))
data.exp <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$exp, res.list = res.list))
data.genus <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$genus, res.list = res.list))
data.nobs <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$nobs, res.list = res.list))
## create data.frame withh all observation
extract.species.try <- data.frame(data.mean, data.sd, data.exp, data.genus, data.nobs, stringsAsFactors =FALSE)
names(extract.species.try) <- c(paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.density"), "mean", sep = "."),
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.density"), "sd", sep = "."),
paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.density"), "exp", sep = "."),
paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.density"), "genus", sep = "."),
paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.density"), "nobs", sep = "."))
return(extract.species.try)
}
##########################
##### FUNCTION TO EXTRACT TRY DATA FOR A SPECIES NEED TO DOCUMENT
fun.extract.format.sp.traits.TRY <- function(sp, sp.syno.table, data) {
### test data sp and sp.syno.table match
if (sum(!(sp %in% sp.syno.table[["sp"]])) > 0)
stop("not same species name in sp and sp.syno.table")
if (sum((sp.syno.table[["Latin_name_syn"]] %in% data[["Latin_name"]])) ==
0)
stop("not a single similar species name in sp and TRY")
sp <- as.character(sp)
sp.syno.table$sp <- as.character(sp.syno.table$sp)
## traits to extract
traits <- c("Leaf.N", "Seed.mass", "SLA", "Wood.density")
# lapply to extract
res.list <- lapply(sp, FUN = fun.species.traits, species.table = sp.syno.table,
traits = traits, data = data)
names(res.list) <- sp.syno.table[["Latin_name_syn"]]
##### TRANSFORM LIST INTO A TABLE
extract.species.try <- fun.turn.list.in.DF(sp.syno.table[["Latin_name_syn"]] , res.list)
##### TEST OF GOOD EXTRACTION OF TRAITS
test.num <- sample((1:length(sp))[!is.na(extract.species.try[["SLA.mean"]])],1)
if( extract.species.try[test.num,"SLA.mean"] != fun.species.traits(sp[test.num], species.table = sp.syno.table,
traits = traits, data = data)$mean[grep("SLA",traits)]) stop('traits value not good for the species in extraction from TRY')
data.frame.TRY <- data.frame(sp = sp, Latin_name = sp.syno.table[["Latin_name_syn"]],
extract.species.try, stringsAsFactors =FALSE)
if (sum(!data.frame.TRY[["sp"]] == sp) > 0)
stop("Wrong order of species code")
return(data.frame.TRY)
}
##############################
##############################
### NO TRY TRAITS
### function to return mean and sd of traits per species or at genus level in a single line data.frame
fun.spe.traits.notry <- function(Latin_name,data.tot,traits.mean,traits.sd,name.match.traits="Latin_name",SD.TF){
mean.vec <- c()
sd.vec <- c()
genus.vec <- c()
for(i in 1:length(traits.mean)){
if(sum(!is.na(data.tot[[traits.mean[i]]]))>0){
data <- data.tot[!is.na(data.tot[[traits.mean[i]]]),]
if(Latin_name %in% data[[name.match.traits]] ){
mean.vec[i] <-mean( data[data[[name.match.traits]] %in% Latin_name,traits.mean[i]])
genus.vec[i] <- FALSE
if(SD.TF){sd.vec[i] <- mean(data[data[[name.match.traits]] %in% Latin_name,traits.sd[i]],na.rm=TRUE)
}else{sd.vec[i] <- NA}
}else{## do genus mean
genus <- sub(" .*", "", Latin_name)
genus.species <- sub(" .*", "", data[[name.match.traits]])
genus.vec[i] <- TRUE
mean.vec[i] <- mean(data[genus.species %in% genus,traits.mean[i]],na.rm=TRUE)
if(SD.TF){sd.vec[i] <- mean(data[genus.species %in% genus ,traits.sd[i]],na.rm=TRUE)
}else{sd.vec[i] <- NA}
}
}else{
mean.vec[i] <- NA
sd.vec[i] <- NA
genus.vec[i] <- TRUE
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
}
}
names(mean.vec) <- traits.mean
names(sd.vec) <- traits.sd
names(genus.vec) <- sub("sd","genus",traits.sd)
extract.species.traits <- data.frame(Latin_name,t(mean.vec),t(sd.vec),t(genus.vec))
return(extract.species.traits)
}
###########
### FUNCTION TO EXTRACT ALL SPECIES
fun.extract.format.sp.traits.NOT.TRY <- function(sp, Latin_name, data,name.match.traits="Latin_name") {
require(plyr)
### test data sp and sp.syno.table match
if (sum((Latin_name %in% data[[name.match.traits]])) ==
0)
stop("not a single similar species name in sp and Traits data")
## traits to extract
traits <- c("Leaf.N", "Seed.mass",
"SLA", "Wood.density","Max.height")
### NEED TO ADD TEST IF SD available in the data
if(sum(grepl("sd",names(data)))>0) SD.TF <- TRUE
traits.mean <- paste(traits,"mean",sep=".")
traits.genus <- paste(traits,"genus",sep=".")
if (SD.TF) traits.sd <- paste(traits,"sd",sep=".")
## extract data
extract.species.traits <- rbind.fill(lapply(Latin_name,FUN=fun.spe.traits.notry ,data,traits.mean,traits.sd,name.match.traits,SD.TF))
data.frame.TRAITS <- data.frame(sp = sp, Latin_name=Latin_name ,
extract.species.traits, stringsAsFactors =FALSE)
if (sum(!data.frame.TRAITS[["sp"]] == sp) > 0)
stop("Wrong order of species code")
return(data.frame.TRAITS)
}