TRY.R 8.86 KiB
######################################################## READ TRY AND FORMAT DATA CHECK ERROR
################ use AccSpeciesName because not author name
source("./R/FUN.TRY.R")
library(MASS)
library(doParallel)
library(mvoutlier)
## read TRY data
TRY.DATA <- read.table("./data/raw/DataTRY/TRY_Proposal_177_DataRelease_2013_04_01.txt", 
    sep = "\t", header = TRUE, na.strings = "", stringsAsFactors = FALSE)
TRY.DATA2 <- read.table("./data/raw/DataTRY/TRY_Proposal_177_DataRelease_2013_07_23.txt", 
    sep = "\t", header = TRUE, na.strings = "", stringsAsFactors = FALSE)
### combine both data set
TRY.DATA <- rbind(TRY.DATA, TRY.DATA2)
rm(TRY.DATA2)
################################## ERROR FOUND IN THE DATA BASE 1 problem with the seed mass of this obs seed mass
################################## = 0 DELETE
TRY.DATA <- TRY.DATA[!(TRY.DATA$ObservationID == 1034196 & TRY.DATA$DataName == "Seed dry mass"), 
#### IS 'Quercuscrispla sp' an error standing for Quercus crispula synonym of
#### Quercus mongolica subsp. crispula (Blume) Menitsky ? ask Jens
#### TRY.DATA[TRY.DATA$AccSpeciesName=='Quercuscrispla sp' ,]
######################## first create a table with one row per Observation.id and column for each traits
######################## and variable
Non.Trait.Data <- c("Latitude", "Longitude", "Reference", "Date of harvest / measurement", 
    "Altitude", "Mean annual temperature (MAT)", "Mean sum of annual precipitation (PPT)", 
    "Plant developmental status / plant age", "Maximum height reference", "Source in Glopnet", 
    "Number of replicates", "Sun vers. shade leaf qualifier")
Trait.Data <- sort(names(((table(TRY.DATA$TraitName)))))
########################## REFORMAT DATA from TRY
registerDoParallel(cores = 5)  ## affect automaticaly half of the core detected to the foreach here I decide to affect 4 cores
getDoParWorkers()  ## here 8 core so 4 core if want to use more registerDoParallel(cores=6)
TRY.DATA.FORMATED <- foreach(ObservationID.t = unique(TRY.DATA$ObservationID), .combine = rbind) %dopar% 
        fun.extract.try(ObservationID.t, data = TRY.DATA, Non.Trait.Data, Trait.Data)
## head(TRY.DATA.FORMATED) dim(TRY.DATA.FORMATED)
saveRDS(TRY.DATA.FORMATED, file = "./data/process/TRY.DATA.FORMATED.rds")
######################## READ RDS
TRY.DATA.FORMATED <- readRDS("./data/process/TRY.DATA.FORMATED.rds")
#################### COMPUTE MEAN AND SD FOR SPECIES from FRENCH NFI for 6 key traits
key.main.traits2 <- c("StdValue.Leaf.nitrogen..N..content.per.dry.mass", "StdValue.Seed.mass", 
    "StdValue.Leaf.specific.area..SLA.", "StdValue.Stem.specific.density..SSD.", 
    "StdValue.Stem.conduit.area..vessel.and.tracheid.", "StdValue.Leaf.lifespan")
############################### READ CSV TABLE WITH LATIN NAME and CODE FOR FRENCH NFI DATA
species.tab <- read.csv("./data/species.list/species.csv", sep = "\t")
species.tab2 <- species.tab[!is.na(species.tab$Latin_name), ]
rm(species.tab)
gc()
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
### species IFN reformat names clean species names and synonyme names species.tab2$Latin_name <- (gsub("_", " ", species.tab2$Latin_name)) species.tab2$Latin_name_syn <- (gsub("_", " ", species.tab2$Latin_name_syn)) ## THIS TABLE HAS ALREADY THE SYNONYME FOR THE FRENCH SPECIES ## remove trailing white space species.tab2$Latin_name_syn <- trim.trailing(species.tab2$Latin_name_syn) ## create vector of species name species.IFN <- unique(pecies.tab2$Latin_name) ########################################################################### EXTRACT SPECIES MEAN AND SD change format try species names TRY.DATA.FORMATED$AccSpeciesName <- as.character(TRY.DATA.FORMATED$AccSpeciesName) key.main.traits2 <- ##################################################################### COMPUTE mean SD species:genus for each traits ######## The table 5 in Kattge et al. 2011 GCB provides estimation of mean species sd ######## SLA species sd log 0.09 Nmass species sd log 0.08 Seed Mass sd log 0.13 ## # SEE sd.log.SLA <- 0.09 ### based on Kattge et al. 2011 sd.log.Nmass <- 0.08 ## ### based on Kattge et al. 2011 sd.log.Seed.Mass <- 0.13 ### based on Kattge et ## al. 2011 sd.log.LL <- 0.03 ### based on Kattge et al. 2011 ###################### Computed sd over the data in log10 we have under the assumption sd constant ###################### over species with lm per species traits <- c("StdValue.Leaf.nitrogen..N..content.per.dry.mass", "StdValue.Seed.mass", "StdValue.Leaf.specific.area..SLA.", "StdValue.Stem.specific.density..SSD.", "StdValue.Plant.height.vegetative") ## minimum number of observation per species to be incldue N.min <- 3 ########################### SPECIES MEAN SD sd.vec.sp <- rep(NA, 5) for (i in 1:(length(traits) - 1)) { table.sp.tmp <- table(TRY.DATA.FORMATED[!is.na(TRY.DATA.FORMATED[[traits[i]]]), "AccSpeciesName"]) data.t <- TRY.DATA.FORMATED[TRY.DATA.FORMATED[["AccSpeciesName"]] %in% names(table.sp.tmp)[table.sp.tmp > N.min], c("AccSpeciesName", traits[i])] names(data.t) <- c("sp", "trait") lm.obj <- lm(log10(trait) ~ sp, data = data.t) print(i) sd.vec.sp[i] <- sd(residuals(lm.obj)) } ### compute 99% quantile of height and its sd TODO COMPUTE WITH ONLY SPECIES WITH ### AT LEAST TWO OBSERVATIONS library(quantreg) table.sp.tmp <- table(TRY.DATA.FORMATED[!is.na(TRY.DATA.FORMATED[[traits[5]]]), "AccSpeciesName"]) data.t <- TRY.DATA.FORMATED[TRY.DATA.FORMATED[["AccSpeciesName"]] %in% names(table.sp.tmp)[table.sp.tmp > N.min], ] res.rq <- rq(log10(StdValue.Plant.height.vegetative) ~ AccSpeciesName - 1, tau = 0.99, data = data.t) summary.res.rq <- summary(res.rq, se = "boot") sd.vec.sp[5] <- mean(summary.res.rq$coefficients[, "Std. Error"]) ## higher than the one reported in Kattge et al. 2011 ####################### Computed sd over the data we have under the assumption sd constant over genus sd.vec.genus <- rep(NA, 5) for (i in 1:(length(traits) - 1)) { table.sp.tmp <- table(sapply(TRY.DATA.FORMATED[!is.na(TRY.DATA.FORMATED[[i]]), "AccSpeciesName"], FUN = fun.get.genus)) data.t <- TRY.DATA.FORMATED[sapply(TRY.DATA.FORMATED[["AccSpeciesName"]], fun.get.genus) %in% names(table.sp.tmp)[table.sp.tmp > N.min], c("AccSpeciesName", traits[i])]
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
names(data.t) <- c("sp", "trait") data.t$gs <- sapply(data.t[["sp"]], fun.get.genus) lm.obj <- lm(log10(trait) ~ gs, data = data.t) sd.vec.genus[i] <- sd(residuals(lm.obj)) } ## quantile for Height with quantreg table.sp.tmp <- table(sapply(TRY.DATA.FORMATED[!is.na(TRY.DATA.FORMATED[[traits[5]]]), "AccSpeciesName"], FUN = fun.get.genus)) data.t <- TRY.DATA.FORMATED[sapply(TRY.DATA.FORMATED[["AccSpeciesName"]], fun.get.genus) %in% names(table.sp.tmp)[table.sp.tmp > N.min], ] res.rq <- rq(log10(TRY.DATA.FORMATED$StdValue.Plant.height.vegetative) ~ sapply(TRY.DATA.FORMATED$AccSpeciesName, FUN = fun.get.genus) - 1, tau = 0.99) summary.res.rq <- summary(res.rq, se = "boot") sd.vec.genus[5] <- mean(summary.res.rq$coefficients[, "Std. Error"]) ##### SET NAME VECTORS names(sd.vec.sp) <- c("sdlog10.sp.Nmass", "sdlog10.sp.Seed.Mass", "sdlog10.sp.SLA", "sdlog10.sp.WD", "sdlog10.sp.Height") names(sd.vec.genus) <- c("sdlog10.gs.Nmass", "sdlog10.gs.Seed.Mass", "sdlog10.gs.SLA", "sdlog10.gs.WD", "sdlog10.gs.Height") ## save mean species and genus sd saveRDS(sd.vec.sp, file = "./data/process/sd.vec.sp.rds") saveRDS(sd.vec.genus, file = "./data/process/sd.vec.genus.rds") sd.vec.sp <- readRDS(file = "./data/process/sd.vec.sp.rds") sd.vec.genus <- readRDS(file = "./data/process/sd.vec.genus.rds") ###################################################################################################### add columns with mean sd per species or per genus depending on whether species ###################################################################################################### or genus data #### add column with the mean sd species or genus data.TRY.sd.update <- data.frame(data.ifn.species.try.noout, data.ifn.species.try.noout[, sd.names]) sd.names.1 <- paste(sd.names, 1, sep = ".") for (i in 1:length(sd.names.1)) { data.TRY.sd.update[[sd.names.1[i]]][!data.TRY.sd.update[[genus.names[i]]]] <- sd.vec.sp[i] data.TRY.sd.update[[sd.names.1[i]]][data.TRY.sd.update[[genus.names[i]]]] <- sd.vec.genus[i] } head(data.TRY.sd.update, 10) saveRDS(data.TRY.sd.update, file = "./data/process/data.TRY.sd.update.rds") ### plot sd to show mark pdf("./figs/sd.traits.pdf") r <- barplot(sd.vec.sp, names.arg = c("Leaf.N", "SM", "SLA", "WD", "Vessel", "LL"), las = 2, ylim = c(0, 0.9), ylab = "sd log10") points(r[, 1], sd.vec.genus, col = "red", pch = 16, cex = 2)
211212213214215216217
## for (i in 1:length(nobs.names)){ ## sd.obs <- ## data.TRY.sd.update[[sd.names[i]]][!data.TRY.sd.update[[genus.names[i]]]] ## ## points(rep(r[i,1],length(sd.obs)),sd.obs) ## sd.obs <- ## data.TRY.sd.update[[sd.names[i]]][data.TRY.sd.update[[genus.names[i]]]] ## ## points(rep(r[i,1],length(sd.obs)),sd.obs,col='red',pch=4) print(sd.obs) } dev.off()