Newer
Older
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
#######################################
#### LSPyIV --TRANSFORMATION MODULE
#######################################
Python LSPIV tools
Contains all definitions/functions that deals with
transformations between coordinate systems (image/world)
"""
import numpy as np
import os
from tkinter import Tk
from tkinter.filedialog import askopenfilename
class GRP:
"""Groud Reference Points class"""
def __init__(self):
# World coordinates
self.X = -99.99
self.Y = -99.99
self.Z = -99.99
# Image coordinates
self.i = -99
self.j = -99
class imgRef:
"""Image References for transformations"""
def __init__(self):
self.xyMin = (-99.99,-99.99)
self.xyMax = (-99.99,-99.99)
self.res = -99.99
self.ninj = (-99,-99) # Size of ORIGINAL image
class camera:
"""Camera class. contains many informations that could also be used for other purposes"""
def __init__(self):
self.position = [] # usually 3-D vector (numpy array)
self.angles = [] # usually 3D vector (numpy array)
self.intrinsic = {} # dict containing intrinsic parameters
self.scale = -99 # used for orthophotographic camera (equals to zoom factor)
self.fps = -99
self.resolution = -99 # resolution of the camera (usually in m/pix or pix/m)
self.resolutionInfo = "" # enter here the unit of resolution to avoid confusions
self.imagesize = () # size of image (tuple)
self.a = [] # a matrix from DLT, used to convert world to image space
self.a_inv = [] # a_inv matrix, used to convert from image to world coordinates
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def read_a(self,filename = ""):
"""
Reads the file containing the a matrix for transformation between space and image coodinate s
Parameters
----------
filename : [str], optional
Path to the file 'coeff.dat'. If "" then a GUI will be opened to select file
The default is "".
Returns
-------
- errno [int]
Error number. Possible values :
- 0 - no errors
- 1 - wrong format contains file coeff.dat
"""
# ---- Initialisation
isExist = os.path.exists(filename) # Check if file exists
if (filename == "") or (isExist == False):
# Open GUI to find file - tkinker lib is used
Tk().withdraw()
filename = askopenfilename(title = "Select coeff.dat", filetypes = (("coeff file","coeff.dat"),("all files","*.*"))) # Get file path
if (filename[-4:] != ".dat" ):
print("ERROR : file format doesn't match\n")
return 1
# ---- Read coeff.dat
fCoeff = open(filename,"r")
lstExtract = fCoeff.read()
lstExtract = lstExtract.strip()
lstExtract = lstExtract.split("\n")
fCoeff.close()
if(int(lstExtract[0]) == 11):
#-------------------
self.a = np.zeros(11,dtype = float)
# from verif_ortho.f90
self.a[0] = np.float(lstExtract[1])
self.a[1] = np.float(lstExtract[2])
self.a[2] = np.float(lstExtract[3])
self.a[3] = np.float(lstExtract[4])
self.a[4] = np.float(lstExtract[8])
self.a[5] = np.float(lstExtract[9])
self.a[6] = np.float(lstExtract[10])
self.a[7] = np.float(lstExtract[11])
self.a[8] = np.float(lstExtract[5])
self.a[9] = np.float(lstExtract[6])
self.a[10] = np.float(lstExtract[7])
else:
print("ERROR: wrong format from file 'coeff.dat'\n")
return 1
return 0
def read_a_inv(self,filename = ""):
"""
Reads the file containing the a_inv matrix for transformation between space and image coodinate s
Parameters
----------
filename : [str], optional
Path to the file 'coeff.dat'. If "" then a GUI will be opened to select file
The default is "".
Returns
-------
- errno [int]
Error number. Possible values :
- 0 - no errors
- 1 - wrong format contains file coeff.dat
"""
# ---- Initialisation
isExist = os.path.exists(filename) # Check if file exists
if (filename == "") or (isExist == False):
# Open GUI to find file - tkinker lib is used
Tk().withdraw()
filename = askopenfilename(title = "Select coeff_inv.dat", filetypes = (("coeff_inv file","coeff_inv.dat"),("all files","*.*"))) # Get file path
if (filename[-4:] != ".dat" ):
print("ERROR : file format doesn't match\n")
return 1
# ---- Read coeff.dat
fVerif = open(filename,"r")
# Burn first line (header)
ligne = fVerif.readline()
# Initialize arrays
ligne = fVerif.readline()
extract = ligne[:-1].split(' ')
fVerif.close()
# Arrange extracted data
extract = [nb for nb in extract if nb!='']
self.a_inv = np.array(extract,dtype = np.float64)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
return 0
# Space coordinates to image coordinate (from Fudaa-LSPIV source)
def space2CRT(a,x,y,h):
xp=((a[0]*x)+(a[1]*y)+(a[2]*h+a[3])) / ((a[8]*x)+(a[9]*y)+(a[10]*h+1))
yp=((a[4]*x)+(a[5]*y)+((a[6]*h)+a[7])) / ((a[8]*x)+(a[9]*y)+(a[10]*h+1))
return (yp,xp)
# Image to space coordinate
def CRT2space(a_inv,i,j):
x = (a_inv[0]*j+a_inv[1]*i+a_inv[2]) / (a_inv[3]*j+a_inv[4]*i+a_inv[5])
y = (a_inv[6]*j+a_inv[7]*i+a_inv[8]) / (a_inv[3]*j+a_inv[4]*i+a_inv[5])
return (x,y)
def image2space(self,imgIndx,xy0 = np.nan):
"""
Converts image indexes to world units with information of the camera and xy0.
Assume that the input image is already ortho-rectified (i.e. image can be assumed to be a plan XY)
Parameters
----------
- imgIndx : [npArrayInt]
Indexes of the images to be transformed. --> shape : [(ind),(i,j)]
WARNING : image coordinate are expected.
Values from Fudaa-LSPIV are usually given in a mathematical coordinate space with (0,0) located down left
So the i index need to be "invert" --> correctiIndex = imageSize(i) - iIndexFudaa
- camera : [lspiv.transform.camera()]
Contains the information of the camera
- xyz0 : [npArrayFloat]
Offset (in meters) apply on the values X, Y for transformation
Returns
-------
- SpaceCoord [npArrayFloat]
X,Y values in meters
- errno [int]
In case of an error this function returns an integer
- 1 - Information missing on the camera : no resolution and no scaling
- 2 - Image isn't squarred, problem with scaling...
- 3 - ResolutionInfo of the camera isn't recognize
"""
if camera.resolutionInfo == "":
# Case no resolution is entered, use simple scaling (typical blender case with othographic camera)
if camera.scale == -99:
print("ERROR : Information missing on the camera : no resolution and no scaling")
return 1
# Image size is assumed to be squared
if camera.imagesize[0]!=camera.imagesize[1]:
print("ERROR : Image isn't squarred, problem with scaling...")
return 1
res = camera.imagesize[0] / camera.scale
elif camera.resolutionInfo == "m/pix":
# Case resolution is given in meter/pixels (typical units from Fudaa-LSPIV project)
res = 1/camera.resolution
elif camera.resolutionInfo == "pix/m":
# Case resolution is given in pixels/meter
res = camera.resolution
else:
print("ERROR : resolution information of the camera isn't recognize. Expected : 'm/pix' or 'pix/m'")
return 3
# If no xy0 are passed to the function they're calculated from the camera data
if np.isnan(xy0):
xy0 = (camera.position - (0.5*camera.scale))[:2]
if len(imgIndx)==0:
print("WARNING : imgIndx is empty...")
# Swap column to get (j,i) as j is x and i is y
JIimgIndx = np.array([imgIndx[:,1],imgIndx[:,0]]).T
out = (JIimgIndx/res) + xy0
return out
def velSpace2dispImage(self,spaceVel,xy0 = np.nan):
"""
Converts image indexes to world units with information of the camera and xy0.
Assume that the input image is already ortho-rectified (i.e. image can be assumed to be a plan XY)
Parameters
----------
- imgIndx : [npArrayInt]
Indexes of the images to be transformed. --> shape : [(ind),(i,j)]
WARNING : image coordinate are expected.
Values from Fudaa-LSPIV are usually given in a mathematical coordinate space with (0,0) located down left
So the i index need to be "invert" --> correctiIndex = imageSize(i) - iIndexFudaa
- camera : [lspiv.transform.camera()]
Contains the information of the camera
- xyz0 : [npArrayFloat]
Offset (in meters) apply on the values X, Y for transformation
Returns
-------
- SpaceCoord [npArrayFloat]
X,Y values in meters
- errno [int]
In case of an error this function returns an integer
- 1 - Information missing on the camera : no resolution and no scaling
- 2 - Image isn't squarred, problem with scaling...
- 3 - ResolutionInfo of the camera isn't recognize
"""
# if isinstance(camera,transform.camera):
# print("\nERROR : wrong format of camera passed to the function. Expected : lspiv.transform.camera ")
# return 1
if camera.resolutionInfo == "":
# Case no resolution is entered, use simple scaling (typical blender case with othographic camera)
if camera.scale == -99:
print("\nERROR : Information missing on the camera : no resolution and no scaling")
return 1
# Image size is assumed to be squared
if camera.imagesize[0]!=camera.imagesize[1]:
print("\nERROR : Image isn't squarred, problem with scaling...")
return 1
res = camera.imagesize[0] / camera.scale
elif camera.resolutionInfo == "m/pix":
# Case resolution is given in meter/pixels (typical units from Fudaa-LSPIV project)
res = 1/camera.resolution
elif camera.resolutionInfo == "pix/m":
# Case resolution is given in pixels/meter
res = camera.resolution
else:
print("\nERROR : resolution information of the camera isn't recognize. Expected : 'm/pix' or 'pix/m'")
return 3
# If no xy0 are passed to the function they're calculated from the camera data
if np.isnan(xy0):
xy0 = (camera.position - (0.5*camera.scale))[:2]
if len(spaceVel)==0:
print("\nWARNING : Values are empty...")
# Compute displacement based on camera info
XYdisp = spaceVel / camera.fps
JIspaceV = (XYdisp)*res
# Swap column to get (i,j) as x is j and y is i
IJindex = np.array([JIspaceV[:,1],JIspaceV[:,0]]).T
return IJindex
###################
#### FUNCTIONS
###################