#' @param useUpstreamQsim boolean describing if simulated (\code{TRUE}) or observed (\code{FALSE}) flows are used for calibration. Default is \code{TRUE}
#' @rdname Calibration
#' @export
Calibration.GRiwrmInputsModel <- function(InputsModel,
RunOptions,
InputsCrit,
CalibOptions,
useUpstreamQsim = TRUE,
...) {
# Argument checks
# We invoke the mandatory arguments here for avoiding
# a messy error message on "get(x)" if an argument is missing
InputsModel
RunOptions
InputsCrit
CalibOptions
# Checking argument classes
vars2check <- c("InputsModel", "RunOptions", "InputsCrit", "CalibOptions")
lapply(vars2check, function(x) {
if (!inherits(get(x), paste0("GRiwrm", x))) {
stop(sprintf("'%1$s' must be of class GRiwrm%1$s, type '?Create%1$s' for help", x))
}
})
OutputsCalib <- list()
class(OutputsCalib) <- append("GRiwrmOutputsCalib", class(OutputsCalib))
OutputsModel <- list()
class(OutputsModel) <- append("GRiwrmOutputsModel", class(OutputsModel))
b <- sapply(InputsModel, function(IM) !IM$inUngaugedCluster)
gaugedIds <- names(b[b])
for (id in gaugedIds) {
IM <- InputsModel[[id]]
message("Calibration.GRiwrmInputsModel: Processing sub-basin ", id, "...")
if (inherits(InputsCrit[[id]], "InputsCritLavenneFunction")) {
IC <- getInputsCrit_Lavenne(id, OutputsModel, InputsCrit)
} else {
IC <- InputsCrit[[id]]
}
hasUngauged <- IM$hasUngauged
if (hasUngauged) {
l <- updateParameters4Ungauged(id,
InputsModel,
RunOptions,
CalibOptions,
OutputsModel,
useUpstreamQsim)
IM <- l$InputsModel
IM$FUN_MOD <- "RunModel_Ungauged"
attr(RunOptions[[id]], "GRiwrmRunOptions") <- l$RunOptions
} else {
if (useUpstreamQsim && any(IM$UpstreamIsModeled)) {
# Update InputsModel$Qupstream with simulated upstream flows
IM <- UpdateQsimUpstream(IM, RunOptions[[id]], OutputsModel)
}
}
if (!is.null(IM$isReservoir) && IM$isReservoir & any(is.na(CalibOptions[[id]]$FixedParam))) {
stop("Parameters of `RunModel_Reservoir` nodes can't be calibrated",
"Fix these parameters by using the command:\n",
"`CalibOptions[[id_of_reservoir_node]]$FixedParam <- c(Vmax, celerity)`")
}
if (!hasUngauged && IM$isReceiver) {
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
# Ungauged node receiving parameters from upstream or sibling node
OutputsCalib[[id]] <- list(
ParamFinalR = transferGRparams(InputsModel,
OutputsCalib[[IM$gaugedId]]$ParamFinalR,
IM$gaugedId,
id,
CalibOptions[[id]]$FixedParam)
)
class(OutputsCalib[[id]]) <- c("OutputsCalib", class(OutputsCalib[[id]]))
} else {
# Let's calibrate a gauged node!
OutputsCalib[[id]] <- Calibration(
InputsModel = IM,
RunOptions = RunOptions[[id]],
InputsCrit = IC,
CalibOptions = CalibOptions[[id]],
...
)
}
if (hasUngauged) {
# Select nodes with model in the sub-network
g <- attr(IM, "GRiwrm")
Ids <- g$id[!is.na(g$donor) & g$donor == id & g$id != id]
for (uId in Ids) {
if (!IM[[uId]]$isReservoir) {
# Add OutputsCalib for ungauged nodes
OutputsCalib[[uId]] <- list(
ParamFinalR = transferGRparams(InputsModel,
OutputsCalib[[id]]$ParamFinalR,
id,
uId)
)
class(OutputsCalib[[uId]]) <- class(OutputsCalib[[id]])
} else {
OutputsCalib[[uId]] <- Calibration(
InputsModel = IM[[uId]],
RunOptions = RunOptions[[uId]],
InputsCrit = IC,
CalibOptions = CalibOptions[[uId]],
...
)
}
}
if (useUpstreamQsim) {
OM_subnet <- RunModel_Ungauged(IM,
RunOptions[[id]],
OutputsCalib[[id]]$ParamFinalR,
output.all = TRUE)
OutputsModel <- c(OutputsModel, OM_subnet)
}
IM <- IM[[id]]
} else if (useUpstreamQsim) {
# Run the model for the sub-basin
OutputsModel[[id]] <- RunModel(
x = IM,
RunOptions = RunOptions[[id]],
Param = OutputsCalib[[id]]$ParamFinalR
)
}
}
return(OutputsCalib)
}
#' Create InputsCrit for De Lavenne regularization
#'
#' Internal function that run [airGR::CreateInputsCrit_Lavenne] on-the-fly with a priori upstream
#' sub-catchment parameters grabbed during network calibration process.
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
#'
#' @param id [character] the id of the current sub-catchment
#' @param OutputsModel \[GRiwrmOutputsModel\] object with simulation results of upstream sub-catchments run with calibrated parameters
#' @param InputsCrit \[InputsCritLavenneFunction\] object internally created by [CreateInputsCrit.GRiwrmInputsModel]
#'
#' @return \[InputsCrit\] object with De Lavenne regularization
#' @import airGR
#' @noRd
#'
getInputsCrit_Lavenne <- function(id, OutputsModel, InputsCrit) {
if (!inherits(InputsCrit[[id]], "InputsCritLavenneFunction")) {
stop("'InputsCrit[[id]]' must be of class InputsCritLavenneFunction")
}
AprioriId <- attr(InputsCrit[[id]], "AprioriId")
AprCelerity <- attr(InputsCrit[[id]], "AprCelerity")
Lavenne_FUN <- attr(InputsCrit[[id]], "Lavenne_FUN")
AprParamR <- OutputsModel[[AprioriId]]$RunOptions$Param
if (!inherits(OutputsModel[[AprioriId]], "SD")) {
# Add Celerity parameter if apriori is an upstream node
AprParamR <- c(AprCelerity, AprParamR)
}
featMod <- attr(InputsCrit[[id]], "model")
if (featMod$hasX4) {
AprParamR[featMod$iX4] <- AprParamR[featMod$iX4] * featMod$X4Ratio
}
AprParamR <- AprParamR[featMod$indexParamUngauged]
message("A priori parameters from node ", AprioriId, ": ", paste(round(AprParamR, 3), collapse = ", "))
AprCrit <- ErrorCrit(InputsCrit[[AprioriId]], OutputsModel[[AprioriId]])$CritValue
return(Lavenne_FUN(AprParamR, AprCrit))
}
#' Reduce a GRiwrm list object (InputsModel, RunOptions...) for a reduced network
#'
#' @param griwrm See [CreateGRiwrm])
#' @param obj Either a *GRiwrmInputsModel*, *GRiwrmOptions*... object
#'
#' @return The object containing only nodes of the reduced model
#' @noRd
reduceGRiwrmObj4Ungauged <- function(griwrm, obj) {
objAttributes <- attributes(obj)
obj <- lapply(obj, function(o) {
if (o$id %in% griwrm$id && any(!is.na(griwrm$model[griwrm$id == o$id]))) {
o
} else {
NULL
}
})
obj[sapply(obj, is.null)] <- NULL
objAttributes$names <- names(obj)
attributes(obj) <- objAttributes
return(obj)
}
#' Set a reduced GRiwrm network for calibration of a sub-network with ungauged
#' hydrological nodes
#'
#' @inheritParams Calibration
#' @param GaugedId [character] Id of the gauged node
#' @param OutputsModel *GRiwrmOutputsModel* of the complete network
#'
#' @return A [list] containing the following items:
#' - `InputsModel`: a *GRiwrmInputsModel* of the reduced network
#' - `RunOptions`: a *GRiwrmRunOptions* of the reduced network
#' @noRd
#' @importFrom dplyr "%>%"
#' @importFrom rlang .data
#'
updateParameters4Ungauged <- function(GaugedId,
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
InputsModel,
RunOptions,
CalibOptions,
OutputsModel,
useUpstreamQsim) {
### Set the reduced network of the basin containing ungauged nodes ###
# Select nodes identified with the current node as donor gauged node
griwrm <- attr(InputsModel, "GRiwrm")
donorIds <- griwrm$id[!is.na(griwrm$donor) & griwrm$donor == GaugedId]
gDonor <- griwrm %>% dplyr::filter(.data$id %in% donorIds)
# Add upstream nodes for routing upstream flows
upNodes <- griwrm %>%
dplyr::filter(.data$down %in% gDonor$id,
!.data$id %in% gDonor$id) %>%
dplyr::mutate(model = ifelse(!is.na(.data$model), NA, .data$model))
upIds <- upNodes$id
g <- rbind(upNodes, gDonor)
# Set downstream nodes
g$down[!g$down %in% g$id] <- NA
### Modify InputsModel for the reduced network ###
# Remove nodes outside of reduced network
InputsModel <- reduceGRiwrmObj4Ungauged(g, InputsModel)
# Copy fixed parameters for Reservoirs
for (id in names(InputsModel)) {
if (InputsModel[[id]]$isReservoir) {
InputsModel[[id]]$FixedParam <- CalibOptions[[id]]$FixedParam
}
}
# Update griwrm
attr(InputsModel, "GRiwrm") <- g
# Update Qupstream already modeled in the reduced network upstream nodes
idIM <- unique(g$down[g$id %in% upIds])
for (id in idIM) {
if (useUpstreamQsim && any(InputsModel[[id]]$UpstreamIsModeled)) {
# Temporarily switch off upstream nodes belonging to the donor basin
UpIsModeledBackUp <- InputsModel[[id]]$UpstreamIsModeled
ImUpIds <- InputsModel[[id]]$UpstreamNodes
InputsModel[[id]]$UpstreamIsModeled[!ImUpIds %in% upIds] <- FALSE
# Update InputsModel$Qupstream with simulated upstream flows
InputsModel[[id]] <- UpdateQsimUpstream(InputsModel[[id]],
RunOptions[[id]],
OutputsModel)
# Restore initial UpstreamIsModeled and switch off already modeled nodes
InputsModel[[id]]$UpstreamIsModeled <- UpIsModeledBackUp
InputsModel[[id]]$UpstreamIsModeled[ImUpIds %in% upIds] <- FALSE
}
}
# Add class InputsModel for airGR::Calibration checks
class(InputsModel) <- c("InputsModel", class(InputsModel))
### Modify RunOptions for the reduced network ###
RunOptions <- reduceGRiwrmObj4Ungauged(g, RunOptions)
return(list(InputsModel = InputsModel, RunOptions = RunOptions))
}
#' Compute the area of downstream sub-basins
#'
#' @param IM *GRiwrmInputsModel* object (See [CreateInputsModel.GRiwrm])
#'
#' @return [numeric] named [vector] of the area of the downstream sub-basins
#' @noRd
calcSubBasinAreas <- function(IM) {
unlist(
sapply(IM, function(x) {
if (is.list(x)) as.numeric(x$BasinAreas[length(x$BasinAreas)])})
)
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
}
#' RunModel for a sub-network of ungauged nodes
#'
#' The function simulates a network with one set of parameters
#' shared with ungauged nodes inside the basin.
#'
#' @details
#' The network should contains only one gauged station at downstream and other
#' nodes can be direct injection or ungauged nodes.
#'
#' This function works as functions similar to [airGR::RunModel_GR4J] except that
#' `InputsModel` is a *GRiwrmInputsModel* containing the network of ungauged nodes
#' and direct injection in the basin.
#'
#' `Param` is adjusted for each sub-basin using the method developed by
#' Lobligeois (2014) for GR models.
#'
#' @references Lobligeois, Florent. Mieux connaître la distribution spatiale des
#' pluies améliore-t-il la modélisation des crues ? Diagnostic sur 181 bassins
#' versants français. Phdthesis, AgroParisTech, 2014.
#' <https://pastel.hal.science/tel-01134990/document>
#'
#' @inheritParams airGR::RunModel
#' @param ouput.all [logical] if `TRUE` returns the output of [RunModel.GRiwrm],
#' returns the `OutputsModel` of the downstream node otherwise
#'
#' @inherit RunModel.GRiwrmInputsModel return return
#' @noRd
RunModel_Ungauged <- function(InputsModel, RunOptions, Param, output.all = FALSE) {
InputsModel$FUN_MOD <- NULL
donor <- RunOptions$id
# Compute Param for each sub-basin
P <- lapply(InputsModel, function(IM) {
if (IM$id == donor) return(Param)
if (IM$isReservoir) {
return(IM$FixedParam)
}
return(transferGRparams(InputsModel, Param, donor, IM$id))
})
OM <- suppressMessages(
RunModel.GRiwrmInputsModel(InputsModel, attr(RunOptions, "GRiwrmRunOptions"), P)
)
if (output.all) {
return(OM)
} else {
return(OM[[length(OM)]])
}
}
#' Transfer GR parameters from one donor sub-basin to a receiver sub-basin
#'
#' This function is used by `Calibration.GRiwrmInputsModel` for transferring parameters
#' to ungauged nodes and
#'
#' @details
#' `donor` and `receiver` nodes should have the same GR model with the same snow
#' module configuration.
#'
#' The transfer takes care of:
#' - the presence/absence of hydraulic routing parameters between the donor and the receiver
#' - the transformationof the X4 parameters of GR models
#'
#' @param InputsModel A *GRiwrmInputsModel* object (See [CreateInputsModel.GRiwrm])
#' @param Param [numeric] vector of GR model parameters
#' @param donor [character] id of the node which gives its parameters
#' @param receiver [character] id of the node which receives the parameters from the donor
#' @param default_param [numeric] vector of GR model parameters if parameters are missing from the donor
#'
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
#' @return A [numeric] [vector] with transferred parameters
#' @export
#'
transferGRparams <- function(InputsModel, Param, donor, receiver, default_param = NULL) {
missing_params <- setdiff(InputsModel[[receiver]]$model$indexParamUngauged,
InputsModel[[donor]]$model$indexParamUngauged)
if (length(missing_params) > 0) {
if (is.null(default_param)) {
stop("Missing parameters in transfer between nodes '",
donor, "' and '", receiver, "'\n",
"Fix the missing parameters with the argument `FixedParam` of `CreateCalibOptions`")
}
max_params <- max(
max(InputsModel[[receiver]]$model$indexParamUngauged),
max(InputsModel[[donor]]$model$indexParamUngauged)
)
if (length(default_param) < max_params) {
stop("Error in parameter transfer between nodes '", donor, "' and '",
receiver, "'\n`default_params` should have a minimum length of ", max_params)
}
Param2 <- rep(as.numeric(NA), length(InputsModel[[receiver]]$model$indexParamUngauged))
Param2[InputsModel[[donor]]$model$indexParamUngauged] <- Param
Param2[missing_params] <- default_param[missing_params]
Param <- Param2
}
p <- Param[InputsModel[[receiver]]$model$indexParamUngauged]
if (InputsModel[[receiver]]$model$hasX4) {
donor_area <- InputsModel[[donor]]$BasinAreas[length(InputsModel[[donor]]$BasinAreas)]
receiver_area <- InputsModel[[receiver]]$BasinAreas[length(InputsModel[[receiver]]$BasinAreas)]
p[InputsModel[[receiver]]$model$iX4] <- max(
Param[InputsModel[[donor]]$model$iX4] *
(receiver_area / donor_area) ^ 0.3,
0.5
)
}
return(p)
}