@@ -34,7 +34,15 @@ Because of the airGR SD model structure, the topology of the network will difere
For example, the physical topology of the Aube lake is represented below:
```{r echo = FALSE, fig.height = 3}
mermaid("graph LR
mmd <- function(x) {
# For avoiding crash of R CMD build in console mode
if(Sys.getenv("RSTUDIO") == "1") {
mermaid(x)
}
}
mmd("graph LR
TRANN_01 -->|1.5km| AUBE_P2
AUBE_P2 -->|22km| AUBE_R3
AUBE_P2 --> AUBE(AUBE)
...
...
@@ -49,7 +57,7 @@ style AUBE fill:#ccf
In the SD model, we do not model intermediate flows as well as the reservoir in the catchment. As a result, an equivalent topology compatible with airGR will be the one below:
```{r echo = FALSE}
mermaid("
mmd("
graph LR
TRANN_01 -->|68km| ARCIS_24
AUBE_P2 -->|66.5km| ARCIS_24
...
...
@@ -64,7 +72,7 @@ style AUBE_R3 fill:#fcc
Configuration on lake Seine is similar:
```{r echo = FALSE, fig.height = 3}
mermaid("
mmd("
graph LR
BAR-S_06 -->|6km| SEINE_P7
SEINE_P7 -->|32km| SEINE_R8
...
...
@@ -80,7 +88,7 @@ graph LR
which can be translate as:
```{r echo = FALSE}
mermaid("
mmd("
graph LR
BAR-S_06 -->|79.7km| MERY-_22
SEINE_P7 -->|73.7km| MERY-_22
...
...
@@ -93,7 +101,7 @@ graph LR
Pannecière is an inline reservoir:
```{r echo = FALSE, fig.height = 2}
mermaid("
mmd("
graph LR
P(PANNECIERE)
CHAUM_07 -->|0km| P
...
...
@@ -105,7 +113,7 @@ style P fill:#ccf
It can be modelled as:
```{r echo = FALSE}
mermaid("
mmd("
graph LR
CHAUM_07 --> |153km| GURGY_02
PANNEC_P --> |153km| GURGY_02
...
...
@@ -120,7 +128,7 @@ With $Q_{PANNEC\_P} = - Q_{CHAUM\_07}$ as all the upstream flow fills the reserv