Commit 2b61c13a authored by Fize Jacques's avatar Fize Jacques
Browse files

Change Readme

1 merge request!5Add new version : Graph Extension, Parallelization, Graph Embedding, Performance enhanced
Showing with 10 additions and 6 deletions
+10 -6
...@@ -81,11 +81,10 @@ ged.set_attr_graph_used("theme","color") # Edge colors and node themes attribute ...@@ -81,11 +81,10 @@ ged.set_attr_graph_used("theme","color") # Edge colors and node themes attribute
## List of algorithms ## List of algorithms
* DeltaCon and DeltaCon0 (*debug needed*) [1] * Graph Embedding
* Vertex Ranking [2] * Graph2Vec [1]
* Vertex Edge Overlap [2] * DeepWalk [7]
* Bag of Nodes (a bag of words model using nodes as vocabulary)
* Bag of Cliques (a bag of words model using cliques as vocabulary)
* Graph kernels * Graph kernels
* Random Walk Kernel (*debug needed*) [3] * Random Walk Kernel (*debug needed*) [3]
* Geometrical * Geometrical
...@@ -98,17 +97,22 @@ ged.set_attr_graph_used("theme","color") # Edge colors and node themes attribute ...@@ -98,17 +97,22 @@ ged.set_attr_graph_used("theme","color") # Edge colors and node themes attribute
* Hausdorff Graph Edit Distance * Hausdorff Graph Edit Distance
* Bipartite Graph Edit Distance * Bipartite Graph Edit Distance
* Greedy Edit Distance * Greedy Edit Distance
* Vertex Ranking [2]
* Vertex Edge Overlap [2]
* Bag of Nodes (a bag of words model using nodes as vocabulary)
* Bag of Cliques (a bag of words model using cliques as vocabulary)
* MCS [6] * MCS [6]
## Publications associated ## Publications associated
* [1] Koutra, D., Vogelstein, J. T., & Faloutsos, C. (2013, May). Deltacon: A principled massive-graph similarity function. In Proceedings of the 2013 SIAM International Conference on Data Mining (pp. 162-170). Society for Industrial and Applied Mathematics. * [1] Narayanan, Annamalai and Chandramohan, Mahinthan and Venkatesan, Rajasekar and Chen, Lihui and Liu, Yang. Graph2vec: Learning distributed representations of graphs. MLG 2017, 13th International Workshop on Mining and Learning with Graphs (MLGWorkshop 2017).
* [2] Papadimitriou, P., Dasdan, A., & Garcia-Molina, H. (2010). Web graph similarity for anomaly detection. Journal of Internet Services and Applications, 1(1), 19-30. * [2] Papadimitriou, P., Dasdan, A., & Garcia-Molina, H. (2010). Web graph similarity for anomaly detection. Journal of Internet Services and Applications, 1(1), 19-30.
* [3] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., & Borgwardt, K. M. (2010). Graph kernels. Journal of Machine Learning Research, 11(Apr), 1201-1242. * [3] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., & Borgwardt, K. M. (2010). Graph kernels. Journal of Machine Learning Research, 11(Apr), 1201-1242.
* [4] Shervashidze, N., Schweitzer, P., Leeuwen, E. J. V., Mehlhorn, K., & Borgwardt, K. M. (2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep), 2539-2561. * [4] Shervashidze, N., Schweitzer, P., Leeuwen, E. J. V., Mehlhorn, K., & Borgwardt, K. M. (2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep), 2539-2561.
* [5] Fischer, A., Riesen, K., & Bunke, H. (2017). Improved quadratic time approximation of graph edit distance by combining Hausdorff matching and greedy assignment. Pattern Recognition Letters, 87, 55-62. * [5] Fischer, A., Riesen, K., & Bunke, H. (2017). Improved quadratic time approximation of graph edit distance by combining Hausdorff matching and greedy assignment. Pattern Recognition Letters, 87, 55-62.
* [6] A graph distance metric based on the maximal common subgraph, H. Bunke and K. Shearer, Pattern Recognition Letters, 1998 * [6] A graph distance metric based on the maximal common subgraph, H. Bunke and K. Shearer, Pattern Recognition Letters, 1998
* [7] Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701-710). ACM.
## Author(s) ## Author(s)
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment