An error occurred while loading the file. Please try again.
-
Fize Jacques authored5783f9cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# coding = utf-8
import json
import numpy as np
from ..models.str import STR
from ..helpers.match_cache import MatchingCache
from ..helpers.relation_extraction import AdjacencyRelation, InclusionRelation
class AnnotationAutomatic(object):
"""
To facilitate the annotation, this class propose an automatic annotation.
Author : Jacques Fize
"""
def __init__(self, dataset):
self.matching_cache = MatchingCache(dataset)
self.adj_rel_db = AdjacencyRelation()
self.inc_rel_db = InclusionRelation()
self.inclusion = json.load(open("notebooks/inclusion.json"))
self.adjacency = json.load(open("notebooks/adjacency.json"))
def all(self, str1, str2, id1=None, id2=None):
"""
Parameters
----------
str1
str2
id1
id2
Returns
-------
"""
if id1 and id2:
found, value = self.matching_cache.is_match(int(id1), int(id2))
if found:
return list(value)
crit_ = [self.criterion1(str1, str2), self.criterion2(str1, str2), self.criterion3(str1, str2, id1, id2),
self.criterion4(str1, str2, id1, id2)]
self.matching_cache.add(id1, id2, *crit_)
return crit_
def criterion1(self, str1, str2):
"""
Return True if both STR contains similar spatial entities.
Parameters
----------
str1
str2
Returns
-------
"""
return int(len(set(str1.graph.nodes.keys()) & set(str2.graph.nodes.keys())) > 0)
def criterion2(self, str1: STR, str2: STR):
"""
Return True if two STR contains proper spatial entities that share a proximity.
Parameters
----------
str1
str2
Returns
-------
"""
stop_en = set(str1.graph.nodes.keys()) & set(str2.graph.nodes.keys())
for es in str1.spatial_entities:
for es2 in str2.spatial_entities:
if not es in stop_en and not es2 in stop_en and es != es2:
if self.inclusion[es][es2]:
return 1
if self.adjacency[es][es2]:
return 1
return 0
def criterion3(self, str1: STR, str2: STR, id1=None, id2=None):
"""
Return True if one or multiple cluster of spatial entities have been found in both STR. Cluster
are constructed based on low distance between spatial entities. The clustering method used is Mean-Shift as
implemented in scikit-learn module.
Parameters
----------
str1
str2
id1
id2
Returns
-------
"""
try:
c1 = str1.get_cluster(id1)
except:
c1 = str1.get_cluster()
try:
c2 = str2.get_cluster(id2)
except:
c2 = str2.get_cluster()
if ("geometry" not in c1) or ("geometry" not in c2):
return 0
c1["area_"] = c1.area
c2["area_"] = c2.area
c1 = c1.sort_values(by="area_", ascending=False)
c2 = c2.sort_values(by="area_", ascending=False)
mean = np.mean(c1.area_)
c1=c1[c1.area_ >= mean]
return int(c1.intersects(c2).any())
# for ind, rows in c1.iterrows():
# if rows.area < mean:
# break
# for ind2, rows2 in c2.iterrows():
# if rows.geometry.intersects(rows2.geometry):
# return 1
return 0
def criterion4(self, str1, str2, id1=None, id2=None, ):
"""
Return True if both str share the same clusters. Using the same clustering methods as in criterion3().
Parameters
----------
str1
str2
id1
id2
Returns
-------
"""
try:
c1 = str1.get_cluster(id1)
except:
c1 = str1.get_cluster() # Feignasse !!!!
try:
c2 = str2.get_cluster(id2)
except:
c2 = str2.get_cluster()
if ("geometry" not in c1) or ("geometry" not in c2):
return 0
return int(c1.intersects(c2).all())