An error occurred while loading the file. Please try again.
-
Fize Jacques authored
Debug disambiguator delete old disambiguator classes Add Parallelization for STR generation and Transform
e9d151de
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbTrainGradientBoostedTree_txx
#define otbTrainGradientBoostedTree_txx
#include "otbLearningApplicationBase.h"
#include "otbGradientBoostedTreeMachineLearningModel.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitGradientBoostedTreeParams()
{
// disable GBTree model with OpenCV 3 (not implemented)
#ifndef OTB_OPENCV_3
AddChoice("classifier.gbt", "Gradient Boosted Tree classifier");
SetParameterDescription(
"classifier.gbt",
"This group of parameters allows setting Gradient Boosted Tree classifier parameters. "
"See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html}.");
if (m_RegressionFlag)
{
AddParameter(ParameterType_Choice, "classifier.gbt.t", "Loss Function Type");
SetParameterDescription("classifier.gbt.t","Type of loss functionused for training.");
AddChoice("classifier.gbt.t.sqr","Squared Loss");
AddChoice("classifier.gbt.t.abs","Absolute Loss");
AddChoice("classifier.gbt.t.hub","Huber Loss");
}
//WeakCount
AddParameter(ParameterType_Int, "classifier.gbt.w", "Number of boosting algorithm iterations");
SetParameterInt("classifier.gbt.w",200);
SetParameterDescription(
"classifier.gbt.w",
"Number \"w\" of boosting algorithm iterations, with w*K being the total number of trees in "
"the GBT model, where K is the output number of classes.");
//Shrinkage
AddParameter(ParameterType_Float, "classifier.gbt.s", "Regularization parameter");
SetParameterFloat("classifier.gbt.s",0.01);
SetParameterDescription("classifier.gbt.s", "Regularization parameter.");
//SubSamplePortion
AddParameter(ParameterType_Float, "classifier.gbt.p",
"Portion of the whole training set used for each algorithm iteration");
SetParameterFloat("classifier.gbt.p",0.8);
SetParameterDescription(
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
"classifier.gbt.p",
"Portion of the whole training set used for each algorithm iteration. The subset is generated randomly.");
//MaxDepth
AddParameter(ParameterType_Int, "classifier.gbt.max", "Maximum depth of the tree");
SetParameterInt("classifier.gbt.max",3);
SetParameterDescription(
"classifier.gbt.max", "The training algorithm attempts to split each node while its depth is smaller than the maximum "
"possible depth of the tree. The actual depth may be smaller if the other termination criteria are met, and/or "
"if the tree is pruned.");
//UseSurrogates : don't need to be exposed !
//AddParameter(ParameterType_Empty, "classifier.gbt.sur", "Surrogate splits will be built");
//SetParameterDescription("classifier.gbt.sur","These splits allow working with missing data and compute variable importance correctly.");
#endif
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainGradientBoostedTree(typename ListSampleType::Pointer trainingListSample,
typename TargetListSampleType::Pointer trainingLabeledListSample,
std::string modelPath)
{
#ifdef OTB_OPENCV_3
(void) trainingListSample;
(void) trainingLabeledListSample;
(void) modelPath;
#else
typedef otb::GradientBoostedTreeMachineLearningModel<InputValueType, OutputValueType> GradientBoostedTreeType;
typename GradientBoostedTreeType::Pointer classifier = GradientBoostedTreeType::New();
classifier->SetRegressionMode(this->m_RegressionFlag);
classifier->SetInputListSample(trainingListSample);
classifier->SetTargetListSample(trainingLabeledListSample);
classifier->SetWeakCount(GetParameterInt("classifier.gbt.w"));
classifier->SetShrinkage(GetParameterFloat("classifier.gbt.s"));
classifier->SetSubSamplePortion(GetParameterFloat("classifier.gbt.p"));
classifier->SetMaxDepth(GetParameterInt("classifier.gbt.max"));
if (m_RegressionFlag)
{
switch (GetParameterInt("classifier.gbt.t"))
{
case 0: // SQUARED_LOSS
classifier->SetLossFunctionType(CvGBTrees::SQUARED_LOSS);
break;
case 1: // ABSOLUTE_LOSS
classifier->SetLossFunctionType(CvGBTrees::ABSOLUTE_LOSS);
break;
case 2: // HUBER_LOSS
classifier->SetLossFunctionType(CvGBTrees::HUBER_LOSS);
break;
default:
classifier->SetLossFunctionType(CvGBTrees::SQUARED_LOSS);
break;
}
}
else
{
classifier->SetLossFunctionType(CvGBTrees::DEVIANCE_LOSS);
}
classifier->Train();
classifier->Save(modelPath);
#endif
}
} //end namespace wrapper
} //end namespace otb
141142
#endif