Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
L
lidaRtRee
  • Project overview
    • Project overview
    • Details
    • Activity
    • Releases
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • CI / CD
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Monnet Jean-Matthieu
  • lidaRtRee
  • Wiki
  • Home

Last edited by Monnet Jean-Matthieu Feb 10, 2021
Page history

Home

lidaRtRee is an R package that provides functions for forest analysis using airborne laser scanning (lidar remote sensing) data: tree detection / segmentation and area-based approach. It includes complementary steps for forest mapping: extraction of both physical (gaps, edges, trees) and statistical features from lidar data, model calibration with ground reference, and maps export.

Installation:

  • R >= 4.0.3 recommended, package lidR >= 3.1.0 required
  • build latest version from source with the devtools package by running in an R console: devtools::install_git("https://gitlab.irstea.fr/jean-matthieu.monnet/lidaRtRee/")
  • windows installation with binary zip file of version 3.0.1: run in an R console: install.packages("https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/raw/master/win-binary/lidaRtRee_3.0.1.zip")

Tutorials using lidaRtRee functions are available on the lidaRtRee_tutorials repository, as Rmarkdown files, html and pdf files, and including datasets to run the code. The wiki presents the different tutorials:

  • Tree detection
  • Forest field plot coregistration with ALS data
  • Forest gaps and edges detection
  • Forest structure metrics computation and mapping
  • Area-based approach for forest parameters estimation
Clone repository
  • Forest habitat metrics
  • Gaps and edges detection workflow
  • area based approach
  • forest plot coregistration workflow
  • Home
  • tree detection workflow
  • uploads
    • 1b7a63d2dc3795b5f8f339b71ef8232e
      • workflow.habitat.metrics
    • 1f78785f64e6d421bedf8cdfa21353af
      • workflow.gap.detection
    • 27195460fd94bae2a632807d21274f2b
      • workflow.gap.detection
    • 276f2766e1a64c83c361ca64f4ecce03
      • workflow.habitat.metrics
    • 2e152b0294bef1e9eb3150ff9fc8afe0
      • workflow.treedetection
    • 3e211dfeafad4060955ef57f3b87739e
      • workflow.treedetection
    • 4748735dd5d75eea34904821cd86a750
      • workflow.coregistration
    • 4b2cc2016f9383b130395b066d0df386
      • workflow.treedetection
    • 5334d5ea12e2dab89072802accbe9497
      • workflow.area based.data.preparation
View All Pages