Newer
Older
#
# *1 INRAE, France
# louis.heraut@inrae.fr
#
# This file is part of ash R toolbox.
#
# ash R toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
#
# ash R toolbox is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ash R toolbox. If not, see <https://www.gnu.org/licenses/>.
# ///
#
#
# plotting/matrix.R
#
# Allows the creation of a summarizing matrix of trend and break analyses
# Generates a summarizing matrix of the trend analyses of all station for different hydrological variables and periods. Also shows difference of means between specific periods.
matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice=NULL, outdirTmp='', outnameTmp='matrix', title=NULL, A3=FALSE) {
nbp = length(list_df2plot)
# Get all different stations code
df_trend = list_df2plot[[1]]$trend
# Convert 'trend_period' to list
trend_period = as.list(trend_period)
# Number of trend period
nPeriod_trend = length(trend_period)
# Fix the maximal number of period to the minimal possible
# Extract start and end of trend periods
Start = df_trend_code$period_start
# Get the name of the different period
UStart = levels(factor(Start))
# Compute the max of different start and end
# so the number of different period
# If the number of period for the trend is greater
# than the current max period, stocks it
if (nPeriod > nPeriod_max) {
nPeriod_max = nPeriod
}
}
tab_Start = array(rep('', nCode*nbp*nPeriod_max),
dim=c(nCode, nbp, nPeriod_max))
tab_End = array(rep('', nCode*nbp*nPeriod_max),
dim=c(nCode, nbp, nPeriod_max))
tab_Code = array(rep('', nCode*nbp*nPeriod_max),
dim=c(nCode, nbp, nPeriod_max))
tab_Periods = array(rep('', nCode*nbp*nPeriod_max),
dim=c(nCode, nbp, nPeriod_max))
# For all code
for (k in 1:nCode) {
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
code = Code[k]
for (i in 1:nbp) {
df_trend = list_df2plot[[i]]$trend
# Extracts the trend corresponding to the code
df_trend_code = df_trend[df_trend$code == code,]
# Extract start and end of trend periods
Start = df_trend_code$period_start
End = df_trend_code$period_end
# Get the name of the different period
UStart = levels(factor(Start))
UEnd = levels(factor(End))
# Compute the max of different start and end
# so the number of different period
nPeriod = max(length(UStart), length(UEnd))
# For all the period
for (j in 1:nPeriod_max) {
# Stocks period
Periods = paste(Start[j],
End[j],
sep=' / ')
tab_Start[k, i, j] = as.character(Start[j])
tab_End[k, i, j] = as.character(End[j])
tab_Code[k, i, j] = code
tab_Periods[k, i, j] = Periods
}
# Blank array to store mean of the trend for each
# station, perdiod and variable
TrendMean_code = array(rep(1, nPeriod_trend*nbp*nCode),
dim=c(nPeriod_trend, nbp, nCode))
# Extracts the data corresponding to the
# current variable
# Extracts the trend corresponding to the
# current variable
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
# Extracts the data corresponding to the code
df_data_code = df_data[df_data$code == code,]
# Extracts the trend corresponding to the code
Start = tab_Start[k, i, j]
End = tab_End[k, i, j]
Periods = tab_Periods[k, i, j]
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
# If there is more than one trend on the same period
# Normalises the trend value by the mean of the data
# Computes the min and the max of the mean trend for
# all the station
minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE)
maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE)
Code_trend = c()
Pthresold_trend = c()
TrendMean_trend = c()
DataMean_trend = c()
Fill_trend = c()
Color_trend = c()
# Extracts the data corresponding to the current variable
# Extracts the trend corresponding to the
# current variable
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
# Extract the type of the variable to plot
type = list_df2plot[[i]]$type
# Extracts the data corresponding to the code
df_data_code = df_data[df_data$code == code,]
# Extracts the trend corresponding to the code
Start = tab_Start[k, i, j]
End = tab_End[k, i, j]
Periods = tab_Periods[k, i, j]
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
# If there is more than one trend on the same period
# Normalises the trend value by the mean of the data
color_res = get_color(trendMean,
minTrendMean[j, i],
maxTrendMean[j, i],
palette_name='perso',
reverse=TRUE)
# Specifies the color fill and contour of
# table cells
fill = color_res
color = 'white'
Pthresold = p_thresold
} else {
fill = 'white'
color = 'grey85'
Pthresold = NA
}
Periods_trend = append(Periods_trend, Periods)
NPeriod_trend = append(NPeriod_trend, j)
Code_trend = append(Code_trend, code)
Pthresold_trend = append(Pthresold_trend, Pthresold)
TrendMean_trend = append(TrendMean_trend, trendMean)
DataMean_trend = append(DataMean_trend, dataMean)
Fill_trend = append(Fill_trend, fill)
Color_trend = append(Color_trend, color)
}
}
}
# If there is a 'mean_period'
if (!is.null(mean_period)) {
# Blank vectors to store info about breaking analysis
Code_mean = c()
DataMean_mean = c()
BreakMean_mean = c()
# Convert 'mean_period' to list
mean_period = as.list(mean_period)
# Number of mean period
nPeriod_mean = length(mean_period)
# Blank array to store difference of mean between two periods
BreakMean_code = array(rep(1, nPeriod_mean*nbp*nCode),
dim=c(nPeriod_mean, nbp, nCode))
# Blank array to store mean for a temporary period in order
# to compute the difference of mean with a second period
dataMeantmp = array(rep(NA, nbp*nCode),
dim=c(nbp, nCode))
# Extracts the data corresponding to
# the current variable
# Extract the type of the variable to plot
type = list_df2plot[[i]]$type
df_data_code = df_data[df_data$code == code,]
# Get the current start and end of the sub period
Start_mean = mean_period[[j]][1]
End_mean = mean_period[[j]][2]
# Extract the data corresponding to this sub period
df_data_code_per =
df_data_code[df_data_code$Date >= Start_mean
& df_data_code$Date <= End_mean,]
Datemin = min(df_data_code_per$Date)
Datemax = max(df_data_code_per$Date)
Periods = paste(Datemin, Datemax,
sep=' / ')
# Mean of the flow over the sub period
# Normalises the break by the mean of the
# initial period
# Stores temporarily the mean of the current period
Periods_mean = append(Periods_mean, Periods)
NPeriod_mean = append(NPeriod_mean, j)
Code_mean = append(Code_mean, code)
DataMean_mean = append(DataMean_mean, dataMean)
BreakMean_mean = append(BreakMean_mean,
BreakMean)
}
}
}
# Computes the min and the max of the averaged trend for
minBreakMean = apply(BreakMean_code, c(1, 2),
min, na.rm=TRUE)
maxBreakMean = apply(BreakMean_code, c(1, 2),
max, na.rm=TRUE)
color_res = get_color(BreakMean,
minBreakMean[j, i],
maxBreakMean[j, i],
palette_name='perso',
reverse=TRUE)
Fill_mean = append(Fill_mean, fill)
Color_mean = append(Color_mean, color)
# If the slice option is not specified, the info for all
# stations will be draw on the same page
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Gets all the different type of plots
Type = levels(factor(Type_trend))
nbType = length(Type)
# For all the type of plots
for (itype in 1:nbType) {
# Gets the type
type = Type[itype]
# Extracts each possibilities of first letter of station code
firstLetter = levels(factor(substr(Code, 1, 1)))
# Number of different first letters
nfL = length(firstLetter)
# For all the available first letter
for (ifL in 1:nfL) {
# Gets the first letter
fL = firstLetter[ifL]
# Get only station code with the same first letter
subCodefL = Code[substr(Code, 1, 1) == fL]
# Counts the number of station in it
nsubCodefL = length(subCodefL)
# Computes the number of pages needed to plot all stations
nMat = as.integer(nsubCodefL/slice) + 1
# For all the pages
for (iMat in 1:nMat) {
# Print the matrix name
print(paste('Matrix ', iMat, '/', nMat,
' of ', type,
' for region : ', fL,
" (",
round((ifL + nfL*(itype-1)) / (nfL*2) * 100,
1),
" %)",
sep=''))
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# Extracts the station for the current page
subCode = subCodefL[(slice*(iMat-1)+1):(slice*iMat)]
# Removes NA stations
subCode = subCode[!is.na(subCode)]
# Reverses verticale order of stations
subCode = rev(subCode)
# Gets the number of station for the page
nsubCode = length(subCode)
# Creates logical vector to select only info about
# stations that will be plot on the page
CodefL_trend =
Code_trend %in% subCode & Type_trend == type
# Extracts those info
subPeriods_trend = Periods_trend[CodefL_trend]
subNPeriod_trend = NPeriod_trend[CodefL_trend]
subVar_trend = Var_trend[CodefL_trend]
subType_trend = Type_trend[CodefL_trend]
subCode_trend = Code_trend[CodefL_trend]
subPthresold_trend = Pthresold_trend[CodefL_trend]
subTrendMean_trend = TrendMean_trend[CodefL_trend]
subDataMean_trend = DataMean_trend[CodefL_trend]
subFill_trend = Fill_trend[CodefL_trend]
subColor_trend = Color_trend[CodefL_trend]
# Same for breaking analysis
CodefL_mean =
Code_mean %in% subCode & Type_mean == type
# Extracts right info
subPeriods_mean = Periods_mean[CodefL_mean]
subNPeriod_mean = NPeriod_mean[CodefL_mean]
subVar_mean = Var_mean[CodefL_mean]
subType_mean = Type_mean[CodefL_mean]
subCode_mean = Code_mean[CodefL_mean]
subDataMean_mean = DataMean_mean[CodefL_mean]
subBreakMean_mean = BreakMean_mean[CodefL_mean]
subFill_mean = Fill_mean[CodefL_mean]
subColor_mean = Color_mean[CodefL_mean]
# Gets the number of variable to plot in
# function of the current type
nbpMod =
length(levels(factor(subVar_trend)))
### Plot ###
# Fixes the height and width of the table according to
# the number of station and the number of column to draw
height = nsubCode
width = nbpMod * 2 * nPeriod_trend + nPeriod_trend + nPeriod_mean * nbpMod + nPeriod_mean + nbpMod
# Fixes the size of the plot area to keep proportion right
options(repr.plot.width=width, repr.plot.height=height)
# Open a new plot with a personalise theme
mat = ggplot() + theme_ash +
# Modification of theme in order to remove axis
theme(
panel.border=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
plot.margin=margin(t=5, r=5, b=5, l=5, unit="mm")
)
# Extracts the name of the currently hydrological
# region plotted
title = df_meta[df_meta$code == subCode[1],]$region_hydro
subtitle = paste(' ', iMat, '/', nMat,' ', type,
sep='')
# Postion and name of the title
xt = 1 - 6
yt = height + 2
Title = bquote(bold(.(title))[.(subtitle)])
# Writes the title
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
annotate("text", x=xt, y=yt,
label=Title,
hjust=0, vjust=1,
size=6, color="#00A3A8")
### Trend ###
# For all the trend period
for (j in 1:nPeriod_trend) {
# Extracts the info to plot associated to the
# right period
Periods_trend_per =
subPeriods_trend[subNPeriod_trend == j]
NPeriods_trend_per =
subNPeriod_trend[subNPeriod_trend == j]
Var_trend_per =
subVar_trend[subNPeriod_trend == j]
Type_trend_per =
subType_trend[subNPeriod_trend == j]
Code_trend_per =
subCode_trend[subNPeriod_trend == j]
Pthresold_trend_per =
subPthresold_trend[subNPeriod_trend == j]
TrendMean_trend_per =
subTrendMean_trend[subNPeriod_trend == j]
DataMean_trend_per =
subDataMean_trend[subNPeriod_trend == j]
Fill_trend_per =
subFill_trend[subNPeriod_trend == j]
Color_trend_per =
subColor_trend[subNPeriod_trend == j]
# Converts the variable list into levels for factor
levels = unlist(Var_trend_per)
# Converts the vector of hydrological variable to
# a vector of integer associated to those variable
Xtmp = as.integer(factor(as.character(Var_trend_per),
levels=levels))
# Computes X position of the column for
# the period dates
Xc = j + (j - 1)*nbpMod*2
# Computes X positions of columns for
# the mean of variables
Xm = Xtmp + (j - 1)*nbpMod*2 + j
# Computes X positions of columns for
# the averaged trend
X = Xtmp + (j - 1)*nbpMod*2 + nbpMod + j
# Computes Y positions of each line for each station
Y = as.integer(factor(Code_trend_per))
# Reverses vertical order of stations
Y = rev(Y)
# Position of a line to delimite periods
x = Xc - 0.4
xend = X[length(X)] + 0.4
y = height + 1.1
yend = height + 1.1
# Drawing of the line
mat = mat +
annotate("segment",
x=x, xend=xend,
y=y, yend=yend,
color="grey40", size=0.35)
# Position of the name of the current period
yt = y + 0.15
Start = trend_period[[j]][1]
End = trend_period[[j]][2]
# Name of the period
periodName =
bquote(bold('Période')~bold(.(as.character(j))))
# Naming the period
annotate("text", x=x, y=yt,
label=periodName,
hjust=0, vjust=0.5,
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
# For all the variable
for (i in 1:length(X)) {
mat = mat +
# Plots circles for averaged trends
gg_circle(r=0.45, xc=X[i], yc=Y[i],
fill=Fill_trend_per[i],
color=Color_trend_per[i]) +
# Plots circles for averaged of variables
gg_circle(r=0.45, xc=Xm[i], yc=Y[i],
fill='white', color='grey40') +
# Plots circles for the column of period dates
gg_circle(r=0.45, xc=Xc, yc=Y[i],
fill='white', color='grey40')
}
# For all averaged trends on this periods
for (i in 1:length(TrendMean_trend_per)) {
# Extracts the value of the averaged trend
trendMean = TrendMean_trend_per[i]
# Converts it to the right format with two
# significant figures
trendMeanC = signif(trendMean*100, 2)
# If it is significative
if (!is.na(Pthresold_trend_per[i])) {
# The text color is white
Tcolor = 'white'
# Otherwise
} else {
# The text is grey
Tcolor = 'grey85'
}
# Same for averaged variables over
# the current period
dataMean = DataMean_trend_per[i]
dataMeanC = signif(dataMean, 2)
mat = mat +
# Writes the mean trend
annotate('text', x=X[i], y=Y[i],
label=trendMeanC,
hjust=0.5, vjust=0.5,
size=3, color=Tcolor) +
# Writes the mean of the associated variable
annotate('text', x=Xm[i], y=Y[i],
label=dataMeanC,
hjust=0.5, vjust=0.5,
size=3, color='grey40')
}
annotate('text', x=Xc, y=max(Y) + 0.9,
label=bquote(bold('Début')),
size=3, color='grey20') +
annotate('text', x=Xc, y=max(Y) + 0.63,
label=bquote(bold('Fin')),
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
size=3, color='grey20')
# For all variable
for (i in 1:nbpMod) {
# Extract the variable of the plot
var = subVar_trend[i]
mat = mat +
# Writes the unit of the variable
annotate('text', x=X[i], y=max(Y) + 0.63,
label=bquote('[%.'*ans^{-1}*']'),
hjust=0.5, vjust=0.5,
size=2, color='grey40') +
# Writes the type of the variable
annotate('text', x=X[i], y=max(Y) + 0.9,
label=bquote(.(var)),
hjust=0.5, vjust=0.5,
size=3.25, color='grey20') +
# Writes the unit of the averaged variable
annotate('text', x=Xm[i], y=max(Y) + 0.63,
label=bquote('['*m^3*'.'*s^{-1}*']'),
hjust=0.5, vjust=0.5,
size=2, color='grey40') +
# Writes the type of the averaged variable
annotate('text', x=Xm[i], y=max(Y) + 0.9,
label=expr(bar(!!var)),
hjust=0.5, vjust=0.5,
size=3.25, color='grey20')
}
# For all the station on the page
for (k in 1:nsubCode) {
# Gets the code
code = subCode[k]
# Extracts label for the period dates
label =
Periods_trend_per[Code_trend_per == code][1]
# Gets the start and end of the period
# for the station
periodStart = substr(label, 1, 4)
periodEnd = substr(label, 14, 17)
mat = mat +
# Writes the starting value
annotate('text', x=Xc, y=k + 0.13,
label=bquote(bold(.(periodStart))),
hjust=0.5, vjust=0.5,
size=3, color='grey40') +
# Writes the ending value
annotate('text', x=Xc, y=k - 0.13,
label=bquote(bold(.(periodEnd))),
hjust=0.5, vjust=0.5,
size=3, color='grey40')
}
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
### Mean ###
# For all the trend period
for (j in 1:nPeriod_mean) {
# Extracts the info to plot associated to the
# right period
Periods_mean_per =
subPeriods_mean[subNPeriod_mean == j]
NPeriods_mean_per =
subNPeriod_mean[subNPeriod_mean == j]
Var_mean_per =
subVar_mean[subNPeriod_mean == j]
Type_mean_per =
subType_mean[subNPeriod_mean == j]
Code_mean_per =
subCode_mean[subNPeriod_mean == j]
DataMean_mean_per =
subDataMean_mean[subNPeriod_mean == j]
BreakMean_mean_per =
subBreakMean_mean[subNPeriod_mean == j]
Fill_mean_per =
subFill_mean[subNPeriod_mean == j]
Color_mean_per =
subColor_mean[subNPeriod_mean == j]
# Converts the variable list into levels for factor
levels = unlist(Var_mean_per)
# Converts the vector of hydrological variable to
# a vector of integer associated to those variable
Xtmp_mean =
as.integer(factor(as.character(Var_mean_per),
levels=levels))
# Computes X position of the column for
# the period dates
Xc_mean = j + (j - 1)*nbpMod + X[length(X)]
# Computes X positions of columns for
# the mean of variables
Xm_mean =
Xtmp_mean + (j - 1)*nbpMod + j + X[length(X)]
# Computes X positions of columns for
# the difference of mean between periods (break)
Xr_mean =
Xtmp_mean + (j - 1)*nbpMod*2 + j + X[length(X)]
# Computes Y positions of each line for each station
Y_mean = as.integer(factor(Code_mean_per))
# Reverses vertical order of stations
Y_mean = rev(Y_mean)
# Position of a line to delimite periods
x = Xc_mean - 0.4
xend = Xm_mean[length(Xm_mean)] + 0.25
y = height + 1.1
yend = height + 1.1
mat = mat +
annotate("segment",
x=x, xend=xend,
y=y, yend=yend,
color="grey40", size=0.35)
# Position of the name of the current period
yt = y + 0.15
Start = mean_period[[j]][1]
End = mean_period[[j]][2]
# Name of the period
periodName = bquote(bold('Période')~bold(.(as.character(j+nPeriod_trend))))
# Naming the period
# Position of a line to delimite results of
# difference of mean bewteen periods
x = Xr_mean[1] - 0.4
xend = Xr_mean[length(Xr_mean)] + 0.25
# Drawing of the line
annotate("segment",
x=x, xend=xend,
y=y, yend=yend,
color="grey40", size=0.35)
# Naming the breaking columns
breakName = bquote(bold('Écart')~bold(.(as.character(j-1+nPeriod_trend)))*bold('-')*bold(.(as.character(j+nPeriod_trend))))
# Writes the name
mat = mat +
annotate("text", x=x, y=yt,
label=breakName,
hjust=0, vjust=0.5,
size=3, color='grey40')
# For all the variable
for (i in 1:length(Xm_mean)) {
mat = mat +
# Plots circles for averaged variables
gg_circle(r=0.45, xc=Xm_mean[i], yc=Y[i],
fill='white', color='grey40') +
# Plots circles for the column of period dates
gg_circle(r=0.45, xc=Xc_mean, yc=Y[i],
fill='white', color='grey40')
# If this is not the first period
if (j > 1) {
mat = mat +
# Plots circles for breaking results
gg_circle(r=0.45, xc=Xr_mean[i], yc=Y[i],
fill=Fill_mean_per[i],
color=Color_mean_per[i])
}
}
# For all averaged variables on this period
for (i in 1:length(DataMean_mean_per)) {
# Extracts values of averaged variables
dataMean = DataMean_mean_per[i]
# Converts it to the right format with two
# significant figures
dataMeanC = signif(dataMean, 2)
# Writes averaged variables values
size=3, color='grey40')
# If this is not the first period
if (j > 1) {
# Extracts values of breaking between periods
BreakMean = BreakMean_mean_per[i]
# Converts it to the right format with two
# significant figures
BreakMeanC = signif(BreakMean*100, 2)
# Writes breaking values
mat = mat +
annotate('text', x=Xr_mean[i], y=Y[i],
label=BreakMeanC,
hjust=0.5, vjust=0.5,
size=3, color='white')
}
annotate('text', x=Xc_mean, y=max(Y) + 0.9,
label=bquote(bold('Début')),
size=3, color='grey20') +
annotate('text', x=Xc_mean, y=max(Y) + 0.63,
label=bquote(bold('Fin')),
size=3, color='grey20')
# For all variables
for (i in 1:nbpMod) {
# Extract the variable of the plot
var = subVar_mean[i]
# Writes the unit of the averaged variable
annotate('text',
x=Xm_mean[i], y=max(Y) + 0.63,
label=bquote('['*m^3*'.'*s^{-1}*']'),
# Writes the type of the averaged variable
annotate('text',
x=Xm_mean[i], y=max(Y) + 0.9,
label=expr(bar(!!var)),
hjust=0.5, vjust=0.5,
# If this is not the first period
if (j > 1) {
mat = mat +
# Writes the unit of the breaking variable
annotate('text', x=Xr_mean[i],
y=max(Y) + 0.63,
label=bquote('[%]'),
hjust=0.5, vjust=0.5,
size=2, color='grey40') +
# Writes the type of the breaking variable
annotate('text', x=Xr_mean[i],
y=max(Y) + 0.9,
label=paste("d", var, sep=''),
hjust=0.5, vjust=0.5,
size=3.25, color='grey20')
}
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
# For all the station on the page
for (k in 1:nsubCode) {
# Gets the code
code = subCode[k]
# Extracts label for the period dates
label = Periods_mean_per[Code_mean_per == code][1]
# Gets the start and end of the period
# for the station
periodStart = substr(label, 1, 4)
periodEnd = substr(label, 14, 17)
mat = mat +
# # Writes the starting value
annotate('text', x=Xc_mean, y=k + 0.13,
label=bquote(bold(.(periodStart))),
hjust=0.5, vjust=0.5,
size=3, color='grey40') +
# Writes the ending value
annotate('text', x=Xc_mean, y=k - 0.13,
label=bquote(bold(.(periodEnd))),
hjust=0.5, vjust=0.5,
size=3, color='grey40')
}
}
### Code ###
# For all the station
# Gets the name of the station
name = df_meta[df_meta$code == code,]$nom
# Fixes a limit for the max number
# of characters available
ncharMax = 38
# If the number of character of the name is greater
# than the limit
if (nchar(name) > ncharMax) {
# Cuts the name and add '...'
name = paste(substr(name, 1, ncharMax),
'...', sep='')
}
# Writes the code of the station
annotate('text', x=0.3, y=k + 0.14,
label=bquote(bold(.(code))),
hjust=1, vjust=0.5,
size=3.5, color="#00A3A8") +
# Writes the name of the station
annotate('text', x=0.3, y=k - 0.14,
label=name,
hjust=1, vjust=0.5,
size=3.5, color="#00A3A8")
# Fixed coordinate system
coord_fixed() +
# X axis
scale_x_continuous(limits=c(1 - rel(6),
width + rel(0.5)),
expand=c(0, 0)) +
# Y axis
scale_y_continuous(limits=c(1 - rel(0.5),
height + rel(2)),
expand=c(0, 0))
# Paper format in A3 if needed
if (A3) {
width = 42
height = 29.7
dpi = 300
# Otherwise in A4
} else {
width = 29.7
height = 21
dpi = 100
}