Newer
Older
# Usefull library
library(ggplot2)
library(scales)
library(qpdf)
library(gridExtra)
library(gridtext)
library(dplyr)
library(grid)
library(ggh4x)
library(RColorBrewer)
# Sourcing R file
source('plotting/panel.R', encoding='latin1')
panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_opt='', filename_opt='', variable='', df_trend=NULL, p_threshold=0.1, unit2day=365.25, type='', trend_period=NULL, mean_period=NULL, axis_xlim=NULL, missRect=FALSE, time_header=NULL, info_header=TRUE, info_ratio=1, time_ratio=2, var_ratio=3, fr_shpdir=NULL, fr_shpname=NULL, bs_shpdir=NULL, bs_shpname=NULL, rv_shpdir=NULL, rv_shpname=NULL, computer_data_path=NULL) {
outfile = "Panels"
if (filename_opt != '') {
outfile = paste(outfile, '_', filename_opt, sep='')
}
outfile = paste(outfile, '.pdf', sep='')
# If there is not a dedicated figure directory it creats one
outdir = file.path(figdir, filedir_opt, sep='')
if (!(file.exists(outdir))) {
dir.create(outdir)
}
outdirTmp = file.path(outdir, 'tmp')
if (!(file.exists(outdirTmp))) {
dir.create(outdirTmp)
} else {
unlink(outdirTmp, recursive=TRUE)
dir.create(outdirTmp)
if (all(class(df_data) != 'list')) {
df_data = list(df_data)
}
if (all(class(df_trend) != 'list')) {
df_trend = list(df_trend)
if (length(df_trend) == 1) {
df_trend = replicate(nbp, df_trend)
}}
if (all(class(p_threshold) != 'list')) {
p_threshold = list(p_threshold)
if (length(p_threshold) == 1) {
p_threshold = replicate(nbp, p_threshold)
}}
if (all(class(unit2day) != 'list')) {
unit2day = list(unit2day)
if (length(unit2day) == 1) {
unit2day = replicate(nbp, unit2day)
}}
if (all(class(type) != 'list')) {
type = list(type)
if (length(type) == 1) {
type = replicate(nbp, type)
}}
if (all(class(missRect) != 'list')) {
missRect = list(missRect)
if (length(missRect) == 1) {
missRect = replicate(nbp, missRect)
}}
# Get all different stations code
Code = levels(factor(df_meta$code))
nCode = length(Code)
# print(df_trend)
df_trendtmp = df_trend[[1]]
# print(df_trendtmp)
nPeriod_max = 0
for (code in Code) {
df_trend_code = df_trendtmp[df_trendtmp$code == code,]
Start = df_trend_code$period_start
UStart = levels(factor(Start))
End = df_trend_code$period_end
UEnd = levels(factor(End))
nPeriod = max(length(UStart), length(UEnd))
if (nPeriod > nPeriod_max) {
nPeriod_max = nPeriod
}
}
for (i in 1:nbp) {
df2plot = list(data=df_data[[i]],
trend=df_trend[[i]],
p_threshold=p_threshold[[i]],
unit2day=unit2day[[i]],
type=type[[i]],
missRect=missRect[[i]])
# okTrend = df_trend[[i]]$trend[df_trend[[i]]$p <= p_threshold[[i]]]
# minTrend[i] = min(okTrend, na.rm=TRUE)
# maxTrend[i] = max(okTrend, na.rm=TRUE)
Start_code = vector(mode='list', length=nCode)
End_code = vector(mode='list', length=nCode)
Code_code = vector(mode='list', length=nCode)
Periods_code = vector(mode='list', length=nCode)
df_trend_code = df_trendtmp[df_trendtmp$code == code,]
Start = df_trend_code$period_start
UStart = levels(factor(Start))
End = df_trend_code$period_end
UEnd = levels(factor(End))
nPeriod = max(length(UStart), length(UEnd))
Periods = c()
for (i in 1:nPeriod_max) {
Periods = append(Periods,
paste(substr(Start[i], 1, 4),
substr(End[i], 1, 4),
sep=' / '))
}
Start_code[[j]] = Start
End_code[[j]] = End
Code_code[[j]] = code
Periods_code[[j]] = Periods
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
TrendMean_code = array(rep(1, nPeriod_max*nbp*nCode),
dim=c(nPeriod_max, nbp, nCode))
for (j in 1:nPeriod_max) {
for (k in 1:nCode) {
code = Code[k]
for (i in 1:nbp) {
df_data = list_df2plot[[i]]$data
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
df_data_code = df_data[df_data$code == code,]
df_trend_code = df_trend[df_trend$code == code,]
Start = Start_code[Code_code == code][[1]][j]
End = End_code[Code_code == code][[1]][j]
Periods = Periods_code[Code_code == code][[1]][j]
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
Ntrend = nrow(df_trend_code_per)
if (Ntrend > 1) {
df_trend_code_per = df_trend_code_per[1,]
}
dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE)
trendMean = df_trend_code_per$trend / dataMean
TrendMean_code[j, i, k] = trendMean
}
}
minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE)
maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE)
for (code in Code) {
# Print code of the station for the current plotting
print(paste("Plotting for station :", code))
nbh = as.numeric(info_header) + as.numeric(!is.null(time_header))
P = vector(mode='list', length=nbg)
if (info_header) {
Hinfo = info_panel(list_df2plot,
df_meta,
computer_data_path=computer_data_path,
fr_shpdir=fr_shpdir,
fr_shpname=fr_shpname,
bs_shpdir=bs_shpdir,
bs_shpname=bs_shpname,
rv_shpdir=rv_shpdir,
rv_shpname=rv_shpname,
time_header_code = time_header[time_header$code == code,]
axis_xlim = c(min(time_header_code$Date),
max(time_header_code$Date))
nbcol = ncol(as.matrix(layout_matrix))
for (i in 1:nbp) {
df_data = list_df2plot[[i]]$data
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
unit2day = list_df2plot[[i]]$unit2day
missRect = list_df2plot[[i]]$missRect
type = list_df2plot[[i]]$type
df_data_code = df_data[df_data$code == code,]
df_trend_code = df_trend[df_trend$code == code,]
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# color_res = get_color(df_trend_code$trend[j],
# minTrend[i],
# maxTrend[i],
# palette_name='perso',
# reverse=TRUE)
Start = Start_code[Code_code == code][[1]][j]
End = End_code[Code_code == code][[1]][j]
Periods = Periods_code[Code_code == code][[1]][j]
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
Ntrend = nrow(df_trend_code_per)
if (Ntrend > 1) {
df_trend_code_per = df_trend_code_per[1,]
}
dataMean = mean(df_data_code$Qm3s, na.rm=TRUE)
trendMean = df_trend_code_per$trend / dataMean
color_res = get_color(trendMean,
minTrendMean[j, i],
maxTrendMean[j, i],
p = time_panel(df_data_code, df_trend_code, type=type,
p_threshold=p_threshold, missRect=missRect,
mean_period=mean_period, axis_xlim=axis_xlim,
unit2day=unit2day, last=(i > nbp-nbcol),
color=color)
layout_matrix = as.matrix(layout_matrix)
nel = nrow(layout_matrix)*ncol(layout_matrix)
idNA = which(is.na(layout_matrix), arr.ind=TRUE)
layout_matrix[idNA] = seq(max(layout_matrix, na.rm=TRUE) + 1,
max(layout_matrix, na.rm=TRUE) + 1 +
nel)
layout_matrix_H = layout_matrix + nbh
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
info_ratio_scale = info_ratio
time_ratio_scale = time_ratio
var_ratio_scale = var_ratio
ndec_info = 0
ndec_time = 0
ndec_var = 0
if (info_ratio_scale != round(info_ratio_scale)) {
ndec_info = nchar(gsub('^[0-9]+.', '',
as.character(info_ratio_scale)))
}
if (time_ratio_scale != round(time_ratio_scale)) {
ndec_time = nchar(gsub('^[0-9]+.', '',
as.character(time_ratio_scale)))
}
if (var_ratio_scale != round(var_ratio_scale)) {
ndec_var = nchar(gsub('^[0-9]+.', '',
as.character(var_ratio_scale)))
}
ndec = max(c(ndec_info, ndec_time, ndec_var))
info_ratio_scale = info_ratio_scale * 10^ndec
time_ratio_scale = time_ratio_scale * 10^ndec
var_ratio_scale = var_ratio_scale * 10^ndec
LM = c()
LMcol = ncol(layout_matrix_H)
LMrow = nrow(layout_matrix_H)
for (i in 1:(LMrow+nbh)) {
# LM = rbind(LM, rep(i, times=LMcol))
LM = rbind(LM,
matrix(rep(rep(i, times=LMcol),
times=info_ratio_scale),
ncol=LMcol, byrow=TRUE))
} else if (!is.null(time_header) & i == 2) {
LM = rbind(LM,
matrix(rep(rep(i, times=LMcol),
} else {
LM = rbind(LM,
matrix(rep(layout_matrix_H[i-nbh,],
ncol=LMcol, byrow=TRUE))
}}
plot = grid.arrange(grobs=P, layout_matrix=LM)
# plot = grid.arrange(rbind(cbind(ggplotGrob(P[[2]]), ggplotGrob(P[[2]])), cbind(ggplotGrob(P[[3]]), ggplotGrob(P[[3]]))), heights=c(1/3, 2/3))
# Saving
ggsave(plot=plot,
path=outdirTmp,
filename=paste(as.character(code), '.pdf', sep=''),
width=21, height=29.7, units='cm', dpi=100)
}
matrice_panel(list_df2plot, df_meta, trend_period,
slice=12, outdirTmp=outdirTmp)
computer_data_path=computer_data_path,
fr_shpdir=fr_shpdir,
fr_shpname=fr_shpname,
bs_shpdir=bs_shpdir,
bs_shpname=bs_shpname,
rv_shpdir=rv_shpdir,
rv_shpname=rv_shpname,
outdirTmp=outdirTmp,
margin=margin(t=5, r=0, b=5, l=5, unit="mm"))
# PDF combine
pdf_combine(input=file.path(outdirTmp, list.files(outdirTmp)),
output=file.path(outdir, outfile))