Newer
Older
library(zoo)
library(StatsAnalysisTrend)
# Sourcing R file
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Compute the time gap by station
get_lacune = function (df_data, df_info) {
# Get all different stations code
Code = levels(factor(df_info$code))
# Create new vector to stock results for cumulative time gap by station
tLac = c()
# Create new vector to stock results for mean time gap by station
meanLac = c()
# Get rows where there is no NA
NoNA = complete.cases(df_data)
# Get data where there is no NA
df_data_NoNA = df_data[NoNA,]
# For every station
for (code in Code) {
# Get only the data rows for the selected station
df_data_code = df_data[df_data$code==code,]
# Get date for the selected station
Date = df_data_code$Date
# Get time span for the selection station
span = as.numeric(Date[length(Date)] - Date[1])
# Get only the data rows with no NA for the selected station
df_data_NoNA_code = df_data_NoNA[df_data_NoNA$code==code,]
# Get date for the selected station
Date_NoNA = df_data_NoNA_code$Date
# Compute the time gap
lac = as.numeric(diff(Date_NoNA) - 1)
# Compute the cumulative gap
lac_sum = sum(lac)
# Store the cumulative gap rate
tLac = c(tLac, lac_sum/span)
# Compute the mean gap
lac_mean = mean(lac[lac != 0])
# Store the mean gap
meanLac = c(meanLac, lac_mean)
}
# Compute the cumulative gap rate in pourcent
tLac100 = tLac * 100
# Create a tibble
df_lac = tibble(code=Code, tLac100=tLac100, meanLac=meanLac)
return (df_lac)
}
get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
for (g in df_Xlist$info$group) {
df_data_code = df_Xlist$data[df_Xlist$data$group == g,]
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
df_Xtrend_code = df_Xtrend[df_Xtrend$group == g,]
Start = df_Xtrend_code$period_start
UStart = levels(factor(Start))
End = df_Xtrend_code$period_end
UEnd = levels(factor(End))
nPeriod = max(length(UStart), length(UEnd))
for (i in 1:nPeriod) {
df_data_code_per =
df_data_code[df_data_code$Date >= Start[i]
& df_data_code$Date <= End[i],]
df_Xtrend_code_per =
df_Xtrend_code[df_Xtrend_code$period_start == Start[i]
& df_Xtrend_code$period_end == End[i],]
id = which(df_Xtrend$group == g
& df_Xtrend$period_start == Start[i]
& df_Xtrend$period_end == End[i])
mu_X = mean(df_data_code_per$Qm3s, na.rm=TRUE)
mu_t = as.numeric(mean(c(Start[i],
End[i]),
na.rm=TRUE)) / unit2day
b = mu_X - mu_t * df_Xtrend_code_per$trend
df_Xtrend$intercept[id] = b
}
}
return (df_Xtrend)
}
get_period = function (per, df_Xtrend, df_XEx, df_Xlist) {
df_Xtrend = tibble(df_Xtrend)
df_Xtrend$period_start = as.Date("1970-01-01")
df_Xtrend$period_end = as.Date("1970-01-01")
df_Xlisttmp = reprepare(df_XEx, df_Xlist, colnamegroup=c('code'))
df_XExtmp = df_Xlisttmp$data
for (g in df_Xlisttmp$info$group) {
df_XExtmp_code = df_XExtmp[df_XExtmp$group == g,]
iStart = which.min(abs(df_XExtmp_code$Date
- as.Date(per[1])))
iEnd = which.min(abs(df_XExtmp_code$Date
- as.Date(per[2])))
id = which(df_Xtrend$group1 == g)
df_Xtrend$period_start[id] =
as.Date(df_XExtmp_code$Date[iStart])
df_Xtrend$period_end[id] =
as.Date(df_XExtmp_code$Date[iEnd])
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# get_QAtrend = function (df_data, period, p_thresold) {
# # AVERAGE ANNUAL FLOW : QA #
# period = as.list(period)
# for (p_thr in p_thresold) {
# Imax = 0
# df_QAtrendB = tibble()
# for (per in period) {
# df_QAlist = prepare(df_data, colnamegroup=c('code'))
# df_QAEx = extract.Var(data.station=df_QAlist,
# funct=mean,
# timestep='year',
# period=per,
# pos.datetime=1,
# na.rm=TRUE)
# df_QAtrend = Estimate.stats(data.extract=df_QAEx)
# I = interval(per[1], per[2])
# if (I > Imax) {
# Imax = I
# df_QAlistB = df_QAlist
# df_QAExB = df_QAEx
# }
# df_QAtrend = get_period(per, df_QAtrend, df_QAEx, df_QAlist)
# df_QAtrendB = bind_rows(df_QAtrendB, df_QAtrend)
# }
# }
# res_QAtrend = clean(df_QAtrendB, df_QAExB, df_QAlistB)
# return (res_QAtrend)
# }
get_QAtrend = function (df_data, period, p_thresold) {
period = as.list(period)
Imax = 0
df_QAtrendB = tibble()
df_QAlist = prepare(df_data, colnamegroup=c('code'))
df_QAEx = extract.Var(data.station=df_QAlist,
funct=mean,
timestep='year',
period=per,
pos.datetime=1,
na.rm=TRUE)
df_QAtrend = Estimate.stats(data.extract=df_QAEx)
I = interval(per[1], per[2])
if (I > Imax) {
Imax = I
df_QAlistB = df_QAlist
df_QAExB = df_QAEx
}
df_QAtrend = get_period(per, df_QAtrend, df_QAEx, df_QAlist)
df_QAtrendB = bind_rows(df_QAtrendB, df_QAtrend)
res_QAtrend = clean(df_QAtrendB, df_QAExB, df_QAlistB)
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
period = as.list(period)
Imax = 0
df_QMNAtrendB = tibble()
for (per in period) {
df_QMNAlist = prepare(df_data, colnamegroup=c('code'))
df_QMNAEx = extract.Var(data.station=df_QMNAlist,
funct=mean,
period=per,
timestep='month',
pos.datetime=1,
na.rm=TRUE)
df_QMNAlist = reprepare(df_QMNAEx, df_QMNAlist, colnamegroup=c('code'))
df_QMNAEx = extract.Var(data.station=df_QMNAlist,
funct=min,
period=per,
timestep='year',
pos.datetime=1,
na.rm=TRUE)
df_QMNAtrend = Estimate.stats(data.extract=df_QMNAEx)
I = interval(per[1], per[2])
if (I > Imax) {
Imax = I
df_QMNAlistB = df_QMNAlist
df_QMNAExB = df_QMNAEx
}
df_QMNAtrend = get_period(per, df_QMNAtrend, df_QMNAEx,
df_QMNAlist)
df_QMNAtrendB = bind_rows(df_QMNAtrendB, df_QMNAtrend)
}
res_QMNAtrend = clean(df_QMNAtrendB, df_QMNAExB, df_QMNAlistB)
get_VCN10trend = function (df_data, df_meta, period, p_thresold) {
# MINIMUM 10 DAY AVERAGE FLOW OVER THE YEAR : VCN10 #
# Get all different stations code
df_data_roll = tibble()
for (c in Code) {
df_data_code = df_data[df_data$code == c,]
df_data_code = tibble(Date=rollmean(df_data_code$Date,
10,
fill=NA),
Qm3s=rollmean(df_data_code$Qm3s,
10,
fill=NA),
code=c)
df_data_roll = bind_rows(df_data_roll, df_data_code)
}
period = as.list(period)
Imax = 0
df_VCN10trendB = tibble()
for (per in period) {
df_VCN10list = prepare(df_data_roll, colnamegroup=c('code'))
df_VCN10Ex = extract.Var(data.station=df_VCN10list,
funct=min,
period=per,
timestep='year',
pos.datetime=1,
na.rm=TRUE)
df_VCN10trend = Estimate.stats(data.extract=df_VCN10Ex)
I = interval(per[1], per[2])
if (I > Imax) {
Imax = I
df_VCN10listB = df_VCN10list
df_VCN10ExB = df_VCN10Ex
}
df_VCN10trend = get_period(per, df_VCN10trend, df_VCN10Ex,
df_VCN10list)
df_VCN10trendB = bind_rows(df_VCN10trendB, df_VCN10trend)
}
res_VCN10trend = clean(df_VCN10trendB, df_VCN10ExB, df_VCN10listB)