Newer
Older
# Usefull library
library(ggplot2)
library(scales)
library(qpdf)
library(gridExtra)
library(gridtext)
library(dplyr)
library(grid)
library(ggh4x)
library(RColorBrewer)
# Sourcing R file
source('plotting/panel.R', encoding='latin1')
panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_opt='', filename_opt='', variable='', df_trend=NULL, p_threshold=0.1, unit2day=365.25, type='', trend_period=NULL, mean_period=NULL, axis_xlim=NULL, missRect=FALSE, time_header=NULL, info_header=TRUE, time_ratio=2, var_ratio=3, fr_shpdir=NULL, fr_shpname=NULL, bs_shpdir=NULL, bs_shpname=NULL, rv_shpdir=NULL, rv_shpname=NULL, computer_data_path=NULL) {
outfile = "Panels"
if (filename_opt != '') {
outfile = paste(outfile, '_', filename_opt, sep='')
}
outfile = paste(outfile, '.pdf', sep='')
# If there is not a dedicated figure directory it creats one
outdir = file.path(figdir, filedir_opt, sep='')
if (!(file.exists(outdir))) {
dir.create(outdir)
}
outdirTmp = file.path(outdir, 'tmp')
if (!(file.exists(outdirTmp))) {
dir.create(outdirTmp)
} else {
unlink(outdirTmp, recursive=TRUE)
dir.create(outdirTmp)
if (all(class(df_data) != 'list')) {
df_data = list(df_data)
}
if (all(class(df_trend) != 'list')) {
df_trend = list(df_trend)
if (length(df_trend) == 1) {
df_trend = replicate(nbp, df_trend)
}}
if (all(class(p_threshold) != 'list')) {
p_threshold = list(p_threshold)
if (length(p_threshold) == 1) {
p_threshold = replicate(nbp, p_threshold)
}}
if (all(class(unit2day) != 'list')) {
unit2day = list(unit2day)
if (length(unit2day) == 1) {
unit2day = replicate(nbp, unit2day)
}}
if (all(class(type) != 'list')) {
type = list(type)
if (length(type) == 1) {
type = replicate(nbp, type)
}}
if (all(class(missRect) != 'list')) {
missRect = list(missRect)
if (length(missRect) == 1) {
missRect = replicate(nbp, missRect)
}}
# Get all different stations code
Code = levels(factor(df_meta$code))
nCode = length(Code)
# print(df_trend)
df_trendtmp = df_trend[[1]]
# print(df_trendtmp)
nPeriod_max = 0
for (code in Code) {
df_trend_code = df_trendtmp[df_trendtmp$code == code,]
Start = df_trend_code$period_start
UStart = levels(factor(Start))
End = df_trend_code$period_end
UEnd = levels(factor(End))
nPeriod = max(length(UStart), length(UEnd))
if (nPeriod > nPeriod_max) {
nPeriod_max = nPeriod
}
}
for (i in 1:nbp) {
df2plot = list(data=df_data[[i]],
trend=df_trend[[i]],
p_threshold=p_threshold[[i]],
unit2day=unit2day[[i]],
type=type[[i]],
missRect=missRect[[i]])
# okTrend = df_trend[[i]]$trend[df_trend[[i]]$p <= p_threshold[[i]]]
# minTrend[i] = min(okTrend, na.rm=TRUE)
# maxTrend[i] = max(okTrend, na.rm=TRUE)
Start_code = vector(mode='list', length=nCode)
End_code = vector(mode='list', length=nCode)
Code_code = vector(mode='list', length=nCode)
Periods_code = vector(mode='list', length=nCode)
df_trend_code = df_trendtmp[df_trendtmp$code == code,]
Start = df_trend_code$period_start
UStart = levels(factor(Start))
End = df_trend_code$period_end
UEnd = levels(factor(End))
nPeriod = max(length(UStart), length(UEnd))
Periods = c()
for (i in 1:nPeriod_max) {
Periods = append(Periods,
paste(substr(Start[i], 1, 4),
substr(End[i], 1, 4),
sep=' / '))
}
Start_code[[j]] = Start
End_code[[j]] = End
Code_code[[j]] = code
Periods_code[[j]] = Periods
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
TrendMean_code = array(rep(1, nPeriod_max*nbp*nCode),
dim=c(nPeriod_max, nbp, nCode))
for (j in 1:nPeriod_max) {
for (k in 1:nCode) {
code = Code[k]
for (i in 1:nbp) {
df_data = list_df2plot[[i]]$data
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
df_data_code = df_data[df_data$code == code,]
df_trend_code = df_trend[df_trend$code == code,]
Start = Start_code[Code_code == code][[1]][j]
End = End_code[Code_code == code][[1]][j]
Periods = Periods_code[Code_code == code][[1]][j]
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
Ntrend = nrow(df_trend_code_per)
if (Ntrend > 1) {
df_trend_code_per = df_trend_code_per[1,]
}
dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE)
trendMean = df_trend_code_per$trend / dataMean
TrendMean_code[j, i, k] = trendMean
}
}
minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE)
maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE)
for (code in Code) {
# Print code of the station for the current plotting
print(paste("Plotting for station :", code))
nbh = as.numeric(info_header) + as.numeric(!is.null(time_header))
nbg = nbp + nbh
P = vector(mode='list', length=nbg)
if (info_header) {
Htext = text_panel(code, df_meta)
P[[1]] = Htext
}
if (!is.null(time_header)) {
time_header_code = time_header[time_header$code == code,]
axis_xlim = c(min(time_header_code$Date),
max(time_header_code$Date))
P[[2]] = Htime
}
nbcol = ncol(as.matrix(layout_matrix))
for (i in 1:nbp) {
df_data = list_df2plot[[i]]$data
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
unit2day = list_df2plot[[i]]$unit2day
missRect = list_df2plot[[i]]$missRect
type = list_df2plot[[i]]$type
df_data_code = df_data[df_data$code == code,]
df_trend_code = df_trend[df_trend$code == code,]
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# color_res = get_color(df_trend_code$trend[j],
# minTrend[i],
# maxTrend[i],
# palette_name='perso',
# reverse=TRUE)
Start = Start_code[Code_code == code][[1]][j]
End = End_code[Code_code == code][[1]][j]
Periods = Periods_code[Code_code == code][[1]][j]
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
Ntrend = nrow(df_trend_code_per)
if (Ntrend > 1) {
df_trend_code_per = df_trend_code_per[1,]
}
dataMean = mean(df_data_code$Qm3s, na.rm=TRUE)
trendMean = df_trend_code_per$trend / dataMean
color_res = get_color(trendMean,
minTrendMean[j, i],
maxTrendMean[j, i],
p = time_panel(df_data_code, df_trend_code, type=type,
p_threshold=p_threshold, missRect=missRect,
mean_period=mean_period, axis_xlim=axis_xlim,
unit2day=unit2day, last=(i > nbp-nbcol),
color=color)
P[[i+nbh]] = p
}
layout_matrix = as.matrix(layout_matrix)
nel = nrow(layout_matrix)*ncol(layout_matrix)
idNA = which(is.na(layout_matrix), arr.ind=TRUE)
layout_matrix[idNA] = seq(max(layout_matrix, na.rm=TRUE) + 1,
max(layout_matrix, na.rm=TRUE) + 1 +
nel)
layout_matrix_H = layout_matrix + nbh
LM = c()
LMcol = ncol(layout_matrix_H)
LMrow = nrow(layout_matrix_H)
for (i in 1:(LMrow+nbh)) {
} else if (!is.null(time_header) & i == 2) {
LM = rbind(LM,
matrix(rep(rep(i, times=LMcol),
times=time_ratio),
ncol=LMcol, byrow=TRUE))
} else {
LM = rbind(LM,
matrix(rep(layout_matrix_H[i-nbh,],
ncol=LMcol, byrow=TRUE))
}}
plot = grid.arrange(grobs=P, layout_matrix=LM)
# plot = grid.arrange(rbind(cbind(ggplotGrob(P[[2]]), ggplotGrob(P[[2]])), cbind(ggplotGrob(P[[3]]), ggplotGrob(P[[3]]))), heights=c(1/3, 2/3))
# Saving
ggsave(plot=plot,
path=outdirTmp,
filename=paste(as.character(code), '.pdf', sep=''),
width=21, height=29.7, units='cm', dpi=100)
}
matrice_panel(list_df2plot, df_meta, trend_period,
slice=12, outdirTmp=outdirTmp)
computer_data_path=computer_data_path,
fr_shpdir=fr_shpdir,
fr_shpname=fr_shpname,
bs_shpdir=bs_shpdir,
bs_shpname=bs_shpname,
rv_shpdir=rv_shpdir,
rv_shpname=rv_shpname,
outdirTmp=outdirTmp)
# PDF combine
pdf_combine(input=file.path(outdirTmp, list.files(outdirTmp)),
output=file.path(outdir, outfile))