datasheet.R 54 KB
Newer Older
Heraut Louis's avatar
Heraut Louis committed
# \\\
# Copyright 2021-2022 Louis Héraut*1
#
# *1   INRAE, France
#      louis.heraut@inrae.fr
#
# This file is part of ash R toolbox.
#
# ash R toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
#
# ash R toolbox is distributed in the hope that it will be useful, but 
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ash R toolbox.  If not, see <https://www.gnu.org/licenses/>.
# ///
#
#
# plotting/datasheet.R
#
# Regroups all the graphical tools to generates the datasheets. More precisely, the 'datasheet_panel' function manages all the call for each station of the different graphical functions that generates info header, time serie visualisation and trend analysis graphs for every variable. It also deals with the arranging of all the plots in a single PDF page.


# Sourcing R file
Heraut Louis's avatar
Heraut Louis committed
source('processing/analyse.R', encoding='UTF-8') # hydrograph
source('plotting/shortcut.R', encoding='UTF-8')
Heraut Louis's avatar
Heraut Louis committed


Heraut Louis's avatar
Heraut Louis committed
## 1. DATASHEET PANEL ________________________________________________
Heraut Louis's avatar
Heraut Louis committed
# Manages datasheets creations for all stations. Makes the call to
# the different headers, trend analysis graphs and realises arranging
# every plots.
datasheet_panel = function (list_df2plot, df_meta, trend_period, info_header, time_header, foot_note, layout_matrix, info_ratio, time_ratio, var_ratio, foot_height, resources_path, logo_dir, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp, df_page=NULL) {
Heraut Louis's avatar
Heraut Louis committed

    # The percentage of augmentation and diminution of the min
    # and max limits for y axis
    lim_pct = 10

    # Number of variable/plot
    nbp = length(list_df2plot)
    
    # Get all different stations code
    Code = levels(factor(df_meta$code))
    nCode = length(Code)

Heraut Louis's avatar
Heraut Louis committed
    # Convert 'trend_period' to list
    trend_period = as.list(trend_period)
    # Number of trend period
    nPeriod_trend = length(trend_period)
Heraut Louis's avatar
Heraut Louis committed

Heraut Louis's avatar
Heraut Louis committed
    # Extracts the min and the max of the mean trend for all the station
Heraut Louis's avatar
Heraut Louis committed
    res = short_trendExtremes(list_df2plot, Code, nPeriod_trend, nbp, nCode)
Heraut Louis's avatar
Heraut Louis committed
    minTrendValue = res$min
    maxTrendValue = res$max
Heraut Louis's avatar
Heraut Louis committed
    
    # Blank vector to store the max number of digit of label for
    # each station
    NspaceMax = c()
    # For all the station
    for (code in Code) {

        # Default max digit
        NspaceMax_code = 0

        # If the time header is given
        if (!is.null(time_header)) {
            nbpMod = nbp + 1
        }

        # For all type of graph
        for (i in 1:nbpMod) {

            if (i > nbp) {
                # Extracts the data serie corresponding to the code
                df_data_code = time_header[time_header$code == code,]
                type = 'sévérité'
            } else {
                # Extracts the data corresponding to the current variable
                df_data = list_df2plot[[i]]$data
                # Extracts the type corresponding to the current variable
                type = list_df2plot[[i]]$type
                # Extracts the data corresponding to the code
                df_data_code = df_data[df_data$code == code,]
            }

            # If variable type is date 
            if (type == 'saisonnalité') {
                # The number of digit is 6 because months are display
                # with 3 characters
                Nspace = 6
            # If it is a flow variable
            } else if (type == 'sévérité') {
                # Gets the max number of digit on the label
                maxtmp = max(df_data_code$Value, na.rm=TRUE)
                # Taking into account of the augmentation of
                # max for the window
                maxtmp = maxtmp * (1 + lim_pct/100)
                
                # If the max is greater than 10
                if (maxtmp >= 10) {
                    # The number of digit is the magnitude plus
                    # the first number times 2
                    Nspace = (get_power(maxtmp) + 1)*2
                    # Plus spaces between thousands hence every 8 digits
                    Nspace = Nspace + as.integer(Nspace/8)
                    # If the max is less than 10 and greater than 1
                } else if (maxtmp < 10 & maxtmp >= 1) {
                    # The number of digit is the magnitude plus
                    # the first number times 2 plus 1 for the dot
                    # and 2 for the first decimal
                    Nspace = (get_power(maxtmp) + 1)*2 + 3
                    # If the max is less than 1 (and obviously more than 0)
                } else if (maxtmp < 1) {
                    # Fixes the number of significant decimals to 3
                    maxtmp = signif(maxtmp, 3)
                    # The number of digit is the number of character
                    # of the max times 2 minus 1 for the dots that
                    # count just 1 space
                    Nspace = nchar(as.character(maxtmp))*2 - 1
                }
            }
            
            # If it is the temporary max number
            if (Nspace > NspaceMax_code) {
                # Stores it
                NspaceMax_code = Nspace
            }
        }
        # Stores the max digit number for labels of a station
        NspaceMax = c(NspaceMax, NspaceMax_code)
    }
    
    # For all the station
    for (k in 1:nCode) {
        # Gets the code
        code = Code[k]
        # Print code of the station for the current plotting
        print(paste("Datasheet for station : ", code,
                    "   (", round(k/nCode*100, 0), " %)", 
                    sep=''))
        
        # Number of header (is info and time serie are needed)
        nbh = as.numeric(info_header) + as.numeric(!is.null(time_header))
        # Actualises the number of plot
        nbg = nbp + nbh + as.numeric(foot_note)

        # Opens a blank list to store plot
        P = vector(mode='list', length=nbg)
        # If the info header is needed
        if (info_header) {            
            # Extracts the data serie corresponding to the code
            time_header_code = time_header[time_header$code == code,]
            # Gets the info plot
            Hinfo = info_panel(list_df2plot, 
                               df_meta,
Heraut Louis's avatar
Heraut Louis committed
                               trend_period=trend_period,
                               mean_period=mean_period,
                               periodHyd=mean_period[[1]],
Heraut Louis's avatar
Heraut Louis committed
                               df_shapefile=df_shapefile,
                               codeLight=code,
                               df_data_code=time_header_code)
            # Stores it
            P[[1]] = Hinfo
        }
        
        # If the time header is given
        if (!is.null(time_header)) {
            # Extracts the data serie corresponding to the code
            time_header_code = time_header[time_header$code == code,]
            # Gets the limits of the time serie
            axis_xlim = c(min(time_header_code$Date),
                          max(time_header_code$Date))
            # Gets the time serie plot
            Htime = time_panel(time_header_code, df_trend_code=NULL,
                               trend_period=trend_period, missRect=TRUE,
                               unit2day=365.25, var='Q', type='sévérité',
                               grid=TRUE, ymin_lim=0,
                               NspaceMax=NspaceMax[k],
                               first=TRUE, lim_pct=lim_pct)
            # Stores it
            P[[2]] = Htime
        }

        # Computes the number of column of plot asked on the datasheet
        nbcol = ncol(as.matrix(layout_matrix))
        # For all variable
        for (i in 1:nbp) {
            # Extracts the data corresponding to the current variable
            df_data = list_df2plot[[i]]$data
            # Extracts the trend corresponding to the
            # current variable
            df_trend = list_df2plot[[i]]$trend
Heraut Louis's avatar
Heraut Louis committed
            alpha = list_df2plot[[i]]$alpha
Heraut Louis's avatar
Heraut Louis committed
            unit2day = list_df2plot[[i]]$unit2day
            missRect = list_df2plot[[i]]$missRect
            # Extract the variable of the plot
            var = list_df2plot[[i]]$var
            type = list_df2plot[[i]]$type
            # Extracts the data corresponding to the code
            df_data_code = df_data[df_data$code == code,]
            # Extracts the trend corresponding to the code
            df_trend_code = df_trend[df_trend$code == code,]

            # Blank vector to store color
            color = c()
            
            # # Default grey color for not significant trend
            # grey = 85
            
            # For all the period
Heraut Louis's avatar
Heraut Louis committed
            for (j in 1:nPeriod_trend) {
Heraut Louis's avatar
Heraut Louis committed
                
                # If the trend is significant
Heraut Louis's avatar
Heraut Louis committed
                if (df_trend_code$p[j] <= alpha){
Heraut Louis's avatar
Heraut Louis committed
                    # Extract start and end of trend periods
                    Start = df_trend_code$period_start[j]
                    End = df_trend_code$period_end[j]
Heraut Louis's avatar
Heraut Louis committed

                    # Extracts the corresponding data for the period
                    df_data_code_per =
                        df_data_code[df_data_code$Date >= Start 
                                     & df_data_code$Date <= End,]
                    # Same for trend
                    df_trend_code_per = 
                        df_trend_code[df_trend_code$period_start == Start 
                                      & df_trend_code$period_end == End,]

                    # Computes the number of trend analysis selected
                    Ntrend = nrow(df_trend_code_per)
                    # If there is more than one trend on the same period
                    if (Ntrend > 1) {
                        # Takes only the first because they are similar
                        df_trend_code_per = df_trend_code_per[1,]
                    }

                    # If it is a flow variable
                    if (type == 'sévérité') {
                        # Computes the mean of the data on the period
                        dataMean = mean(df_data_code_per$Value,
                                        na.rm=TRUE)
                        # Normalises the trend value by the mean
                        # of the data
                        trendValue = df_trend_code_per$trend / dataMean
                    # If it is a date variable
                    } else if (type == 'saisonnalité') {
                        trendValue = df_trend_code_per$trend
                    }
                    
                    # Gets the color corresponding to the mean trend
                    color_res = get_color(trendValue, 
                                          minTrendValue[j, i],
                                          maxTrendValue[j, i],
                                          palette_name='perso',
                                          reverse=TRUE)
                    # Stores it temporarily
                    colortmp = color_res
                # Otherwise
                } else {
                    # Stores the default grey color
                    colortmp = paste('grey85', sep='')
                    
                }
                # Stores the color
                color = append(color, colortmp)                
            }

            # Computes the time panel associated to the current variable
            p = time_panel(df_data_code, df_trend_code, var=var,
Heraut Louis's avatar
Heraut Louis committed
                           type=type, alpha=alpha,
Heraut Louis's avatar
Heraut Louis committed
                           missRect=missRect, trend_period=trend_period,
                           mean_period=mean_period, axis_xlim=axis_xlim, 
                           unit2day=unit2day, grid=FALSE, color=color,
                           NspaceMax=NspaceMax[k], last=(i == nbp),
                           lim_pct=lim_pct)

            # Stores the plot
Heraut Louis's avatar
Heraut Louis committed
            P[[i+nbh]] = p            
Heraut Louis's avatar
Heraut Louis committed
        }

Heraut Louis's avatar
Heraut Louis committed
        if (!is.null(df_page)) {
Heraut Louis's avatar
Heraut Louis committed
            section = 'Fiche station'
Heraut Louis's avatar
Heraut Louis committed
            subsection = code
            n_page = df_page$n[nrow(df_page)] + 1
            df_page = bind_rows(
                df_page,
                tibble(section=section,
                       subsection=subsection,
                       n=n_page))
        }
        
        if (foot_note) {
            footName = 'fiche station'
            if (is.null(df_page)) {
                n_page = k
            }
            
            foot = foot_panel(footName, n_page, resources_path,
                              logo_dir,
Heraut Louis's avatar
Heraut Louis committed
                              AEAGlogo_file, INRAElogo_file,
                              FRlogo_file, foot_height)
            P[[nbg]] = foot
        }
Heraut Louis's avatar
Heraut Louis committed
        
        # Convert the 'layout_matrix' to a matrix if it is not already 
        layout_matrix = as.matrix(layout_matrix)

        # Number of element of the matrix
        nel = nrow(layout_matrix)*ncol(layout_matrix)
        # Gets the place where there is NA value
        idNA = which(is.na(layout_matrix), arr.ind=TRUE)

        LM = layout_matrix
        # Adds non existing plot is where the is NA
        LM[idNA] = seq(max(layout_matrix, na.rm=TRUE) + 1,
                       max(layout_matrix, na.rm=TRUE) + 1 +
                       nel)
        # Shifts all plots to be coherent with the adding of header
        LM = LM + nbh
        
        if (!is.null(time_header)) {
            LM = rbind(2, LM)
        } else {
            time_ratio = 0
        }
        if (info_header) {
            LM = rbind(1, LM)
        } else {
            info_ratio = 0
        }
        
        if (foot_note) {
            id_foot = length(LM) + 1
            LM = rbind(LM, id_foot)
        } else {
            foot_height = 0
        }

        LMcol = ncol(LM)
        LMrow = nrow(LM)
        
        LM = rbind(rep(99, times=LMcol), LM, rep(99, times=LMcol))
        LMrow = nrow(LM)
        LM = cbind(rep(99, times=LMrow), LM, rep(99, times=LMrow))
        LMcol = ncol(LM)
        
Heraut Louis's avatar
Heraut Louis committed
        margin_size = 0.5
Heraut Louis's avatar
Heraut Louis committed
        height = 29.7
        width = 21

Heraut Louis's avatar
Heraut Louis committed
        Norm_ratio = height * (info_ratio + time_ratio + var_ratio*nbp) / (height - 2*margin_size - foot_height)
Heraut Louis's avatar
Heraut Louis committed

        info_height = height * info_ratio / Norm_ratio
        time_height = height * time_ratio / Norm_ratio
        var_height = height * var_ratio / Norm_ratio

        Hcut = LM[, 2]
        heightLM = rep(0, times=LMrow) 
        
        heightLM[Hcut == 1] = info_height
        heightLM[Hcut == 2] = time_height
        heightLM[Hcut > 2 & Hcut < id_foot] = var_height
        heightLM[Hcut == id_foot] = foot_height
Heraut Louis's avatar
Heraut Louis committed
        heightLM[Hcut == 99] = margin_size
Heraut Louis's avatar
Heraut Louis committed

Heraut Louis's avatar
Heraut Louis committed
        col_width = (width - 2*margin_size) / (LMcol - 2)
Heraut Louis's avatar
Heraut Louis committed
        
        Wcut = LM[(nrow(LM)-1),]
        widthLM = rep(col_width, times=LMcol)
Heraut Louis's avatar
Heraut Louis committed
        widthLM[Wcut == 99] = margin_size
Heraut Louis's avatar
Heraut Louis committed

        # Plot the graph as the layout
        plot = grid.arrange(grobs=P, layout_matrix=LM,
                            heights=heightLM, widths=widthLM)

        # Saving
        ggsave(plot=plot, 
               path=outdirTmp,
               filename=paste(as.character(code), '.pdf', sep=''),
               width=width, height=height, units='cm', dpi=100)
        
    }
Heraut Louis's avatar
Heraut Louis committed
    return (df_page)
Heraut Louis's avatar
Heraut Louis committed
}


Heraut Louis's avatar
Heraut Louis committed
## 2. OTHER PANEL FOR THE DATASHEET __________________________________
### 2.1. Time panel __________________________________________________
Heraut Louis's avatar
Heraut Louis committed
time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRect=FALSE, unit2day=365.25, trend_period=NULL, mean_period=NULL, axis_xlim=NULL, grid=TRUE, ymin_lim=NULL, color=NULL, NspaceMax=NULL, first=FALSE, last=FALSE, lim_pct=10) {
Heraut Louis's avatar
Heraut Louis committed
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

    # If 'type' is square root apply it to data
    if (var == 'sqrt(Q)') {
        df_data_code$Value = sqrt(df_data_code$Value)
    }
    
    # Compute max and min of flow
    maxQ = max(df_data_code$Value, na.rm=TRUE)
    minQ = min(df_data_code$Value, na.rm=TRUE)

    spread = maxQ - minQ
    
    nTick = 6
    maxQ_win = maxQ + spread*lim_pct/100
    minQ_win = minQ - spread*lim_pct/100

    if (minQ_win < 0) {
        minQtmp_lim = 0
    } else {
        minQtmp_lim = minQ_win
    }

    if (!is.null(ymin_lim)) {
        minQ_win = ymin_lim
    }
    
    spreadtmp = maxQ_win - minQtmp_lim
    
    breakQtmp = spreadtmp / (nTick - 1)

    GradQ_10 = c(0, 1, 1.5, 2, 2.5, 3, 4, 5, 10)

    Grad = GradQ_10 * 10^get_power(breakQtmp)
    dist = abs(Grad - breakQtmp)
    idGrad = which.min(dist)
    breakQ = Grad[idGrad]
    
    if (is.null(ymin_lim)) {
        Grad = GradQ_10 * 10^get_power(minQtmp_lim)      
        Grad[Grad > minQtmp_lim] = NA        
        dist = abs(Grad - minQtmp_lim)        
        idGrad = which.min(dist)        
        minQ_lim = Grad[idGrad]        
    } else {        
        minQ_lim = ymin_lim
    }
    maxQ_list = c()
    i = 1
    maxQtmp = minQ_lim
    
    while (maxQtmp <= maxQ_win) {
        maxQtmp = minQ_lim + i*breakQ
        i = i + 1
    }   
    maxQ_lim = maxQtmp    
    
    
    # If x axis limits are specified
    if (!is.null(axis_xlim)) {
        minor_minDatetmp_lim = as.Date(axis_xlim[1])
        minor_maxDatetmp_lim = as.Date(axis_xlim[2])
    # Otherwise
    } else {
        minor_minDatetmp_lim = as.Date(df_data_code$Date[1]) 
        minor_maxDatetmp_lim =
            as.Date(df_data_code$Date[length(df_data_code$Date)])
    }

    minor_minDatetmp_lim = as.numeric(format(minor_minDatetmp_lim, "%Y"))
    minor_maxDatetmp_lim = as.numeric(format(minor_maxDatetmp_lim, "%Y"))

    minDatetmp_lim = minor_minDatetmp_lim
    maxDatetmp_lim = minor_maxDatetmp_lim

    nTick = 8
    
    spreadtmp = minor_maxDatetmp_lim - minor_minDatetmp_lim
    breakDatetmp = spreadtmp / (nTick - 1)

    GradDate_10 = c(1, 2.5, 5, 10)

    Grad = GradDate_10 * 10^get_power(breakDatetmp)
    dist = abs(Grad - breakDatetmp)
    idGrad = which.min(dist)
    breakDate = Grad[idGrad]

    listDate = seq(round(minDatetmp_lim, -1)-10^(get_power(breakDate)+1),
                   round(maxDatetmp_lim, -1)+10^(get_power(breakDate)+1),
                   by=breakDate)

    minDate_lim = listDate[which.min(abs(listDate - minDatetmp_lim))]
    maxDate_lim = listDate[which.min(abs(listDate - maxDatetmp_lim))]
    minDate_lim = as.Date(paste(minDate_lim, '-01-01', sep=''))
    maxDate_lim = as.Date(paste(maxDate_lim, '-01-01', sep=''))


    minor_breakDatetmp = breakDate / 5
    
    GradMinorDate_10 = c(1, 2, 5, 10)

    Grad = GradMinorDate_10 * 10^get_power(minor_breakDatetmp)
    dist = abs(Grad - minor_breakDatetmp)
    idGrad = which.min(dist)
    minor_breakDate = Grad[idGrad]
    
    listDate = seq(round(minor_minDatetmp_lim,
                         -1) - 10^(get_power(minor_breakDate)+1),
                   round(minor_maxDatetmp_lim,
                         -1) + 10^(get_power(minor_breakDate)+1),
                   by=minor_breakDate)

    minor_minDate_lim =
        listDate[which.min(abs(listDate - minor_minDatetmp_lim))]
    minor_maxDate_lim =
        listDate[which.min(abs(listDate - minor_maxDatetmp_lim))]
    minor_minDate_lim = as.Date(paste(minor_minDate_lim,
                                      '-01-01', sep=''))
    minor_maxDate_lim = as.Date(paste(minor_maxDate_lim,
                                      '-01-01', sep=''))

    # Open new plot
    p = ggplot() + theme_ash

    # Margins
    if (first) {
        p = p + 
            theme(plot.margin=margin(t=2.5, r=0, b=3, l=0, unit="mm"))
    } else if (last) {
        p = p + 
            theme(plot.margin=margin(t=2, r=0, b=0, l=0, unit="mm"))
    } else if (first & last) {
        p = p + 
            theme(plot.margin=margin(t=2.5, r=0, b=0, l=0, unit="mm"))
    } else {
        p = p + 
            theme(plot.margin=margin(t=2, r=0, b=2, l=0, unit="mm"))
    }

    
    ## Sub period background ##
    if (!is.null(trend_period)) {
        
        # trend_period = as.list(trend_period)
        # Imin = 10^99
        # for (per in trend_period) {
        #     I = interval(per[1], per[2])
        #     if (I < Imin) {
        #         Imin = I
        #         trend_period_min = as.Date(per)
        #     }
        # }
        # p = p + 
        #     geom_rect(aes(xmin=min(df_data_code$Date),
        #                   ymin=0, 
        #                   xmax=trend_period_min[1],
        #                   ymax= maxQ*1.1),
        #               linetype=0, fill='grey97') +
            
        #     geom_rect(aes(xmin=trend_period_min[2],
        #                   ymin=0, 
        #                   xmax=max(df_data_code$Date), 
        #                   ymax= maxQ*1.1),
        #               linetype=0, fill='grey97') 

        # Convert trend period to list if it is not
        trend_period = as.list(trend_period)
        # Fix a disproportionate minimum for period
        Imin = 10^99
        # For all the sub period of analysis in 'trend_period'
        for (per in trend_period) {
            # Compute time interval of period
            I = interval(per[1], per[2])
            # If it is the smallest interval
            if (I < Imin) {
                # Store it
                Imin = I
                # Fix min period of analysis
                trend_period_min = as.Date(per)
            }
        }
        
        minPer = trend_period_min[1]
        maxPer = trend_period_min[2]

        # If it is not a flow or sqrt of flow time serie
        if (var != 'sqrt(Q)' & var != 'Q') {
            # If there is an 'axis_lim'
            if (!is.null(axis_xlim)) {
                # If the temporary start of period is smaller 
                # than the fix start of x axis limit
                if (minPer < axis_xlim[1]) {
                    # Set the start of the period to the start of
                    # the x axis limit
                    minPer = axis_xlim[1]
                }
            }
        }
        
        # If it is not a flow or sqrt of flow time serie
        if (var != 'sqrt(Q)' & var != 'Q') {
            # If there is an 'axis_lim'
            if (!is.null(axis_xlim)) {
                # If the temporary end of period plus one year 
                # is smaller than the fix end of x axis limit
                if (maxPer + years(1) < axis_xlim[2]) {
                    # Add one year the the temporary end of period
                    maxPer = maxPer + years(1)
                } else {
                    # Set the start of the period to the start of
                    # the x axis limit
                    maxPer = axis_xlim[2]
                }
                # Add one year the the temporary end of period
                # if there is no 'axis_lim'
            } else {
                    maxPer = maxPer + years(1)
            }
        }

        # Draw rectangle to delimiting the sub period
        p = p + 
            geom_rect(aes(xmin=minPer,
                          ymin=minQ_win, 
                          xmax=maxPer,
                          ymax= maxQ_win),
                      linetype=0, fill='grey97')
    }

    ## Mean step ##
    # If there is a 'mean_period'
    if (!is.null(mean_period)) {
        # Convert 'mean_period' to list
        mean_period = as.list(mean_period)
        # Number of mean period
        nPeriod_mean = length(mean_period)

        # Blank tibble to store variable in order to plot
        # rectangle for mean period
        plot_mean = tibble()
        # Blank tibble to store variable in order to plot
        # upper limit of rectangle for mean period
        plot_line = tibble()
        # For all mean period
        for (j in 1:nPeriod_mean) {
            # Get the current start and end of the sub period
            xmin = as.Date(mean_period[[j]][1])
            xmax = as.Date(mean_period[[j]][2])
            
            # Extract the data corresponding to this sub period
            df_data_code_per =
                df_data_code[df_data_code$Date >= xmin
                             & df_data_code$Date <= xmax,]
            
            # If the min over the sub period is greater
            # than the min of the entier period and
            # it is not the first sub period
            if (xmin > min(df_data_code$Date) & j != 1) {
                # Substract 6 months to be in the middle of
                # the previous year
                xmin = add_months(xmin, -6)
            }
            # If it is not a flow or sqrt of flow time serie and
            # it is the first period
            if (var != 'sqrt(Q)' & var != 'Q' & j == 1) {
                # If there is an x axis limit
                if (!is.null(axis_xlim)) {
                    # If the min of the period is before the x axis min
                    if (xmin < axis_xlim[1]) {
                        # The min for the sub period is the x axis
                        xmin = axis_xlim[1]
                    }
                }
            }

            # If the max over the sub period is smaller
            # than the max of the entier period and
            # it is not the last sub period
            if (xmax < max(df_data_code$Date) & j != nPeriod_mean) {
                # Add 6 months to be in the middle of
                # the following year
                xmax = add_months(xmax, 6)
            }
            # If it is not a flow or sqrt of flow time serie and
            # it is the last period
            if (var != 'sqrt(Q)' & var != 'Q' & j == nPeriod_mean) {
                # If there is an x axis limit
                if (!is.null(axis_xlim)) {
                    # If the max of the period plus 1 year
                    # is smaller thant the max of the x axis limit
                    if (xmax + years(1) < axis_xlim[2]) {
                        # Add one year to the max to include
                        # the entire last year graphically
                        xmax = xmax + years(1)
                    } else {
                        # The max of this sub period is the max
                        # of the x axis limit
                        xmax = axis_xlim[2]
                    }
                    # If there is no axis limit
                } else {
                    # Add one year to the max to include
                    # the entire last year graphically
                    xmax = xmax + years(1)
                }
            }
            
            # Mean of the flow over the sub period
            ymax = mean(df_data_code_per$Value, na.rm=TRUE)

            # Create temporary tibble with variable
            # to create rectangle for mean step
            plot_meantmp = tibble(xmin=xmin, xmax=xmax, 
                                  ymin=minQ_win, ymax=ymax, period=j)
            # Bind it to the main tibble to store it with other period
            plot_mean = bind_rows(plot_mean, plot_meantmp)

            # Create vector for the upper limit of the rectangle
            abs = c(xmin, xmax)
            ord = c(ymax, ymax)
            
            # Create temporary tibble with variable
            # to create upper limit for rectangle
            plot_linetmp = tibble(abs=abs, ord=ord, period=j)
            # Bind it to the main tibble to store it with other period
            plot_line =  bind_rows(plot_line, plot_linetmp)
        }
        # Plot rectangles
        p = p + 
            geom_rect(data=plot_mean,
                      aes(xmin=xmin, ymin=ymin, 
                          xmax=xmax, ymax=ymax),
                      linetype=0, fill='grey93')
        # Plot upper line for rectangle
        p = p +
            geom_line(data=plot_line,
                      aes(x=abs, y=ord, group=period),
                      color='grey85',
                      size=0.15)

        
        # for all the sub periods except the last one
        for (i in 1:(nPeriod_mean - 1)) {
            # Computes the time difference in days between periods
            dPeriod = abs(as.Date(mean_period[[i+1]][1]) - as.Date(mean_period[[i]][2]))
                
            if (dPeriod < 10) {
                # The x limit is the x max of the ith rectangle
                xLim = plot_mean$xmax[i]
                # The y limit of rectangle is the max of
                # the two neighboring mean step rectangle
                yLim = max(c(plot_mean$ymax[i], plot_mean$ymax[i+1]))
                # Make a tibble to store data
                plot_lim = tibble(x=c(xLim, xLim), y=c(minQ_win, yLim))
                # Plot the limit of rectangles
                p = p + 
                    geom_line(data=plot_lim, aes(x=x, y=y),
                              linetype='dashed', size=0.15,
                              color='grey85')
                
            } else {
                # Takes the x and y limits for the ith rectangle
                xLim_i = plot_mean$xmax[i]
                yLim_i = plot_mean$ymax[i]
                # Takes the x and y limits for the i+1th rectangle
                xLim_i1 = plot_mean$xmin[i+1]
                yLim_i1 = plot_mean$ymax[i+1]
                
                # Make a tibble to store data
                plot_lim = tibble(x_i=c(xLim_i, xLim_i),
                                  y_i=c(minQ_win, yLim_i),
                                  x_i1=c(xLim_i1, xLim_i1),
                                  y_i1=c(minQ_win, yLim_i1))
                # Plot the limit of rectangles
                p = p + 
                    geom_line(data=plot_lim, aes(x=x_i, y=y_i),
                              linetype='dashed', size=0.15,
                              color='grey85') +
                    geom_line(data=plot_lim, aes(x=x_i1, y=y_i1),
                              linetype='dashed', size=0.15,
                              color='grey85')
            }      
        }
    }

    ### Grid ###
    if (grid) {
        # If there is no axis limit
        if (is.null(axis_xlim)) {
            # The min and the max is set by
            # the min and the max of the date data 
            xmin = min(df_data_code$Date)
            xmax = max(df_data_code$Date)
        } else {
            # Min and max is set with the limit axis parameter
            xmin = axis_xlim[1]
            xmax = axis_xlim[2]
        }
        # Create a vector for all the y grid position
        ygrid = seq(minQ_win, maxQ_win, breakQ)
        # Blank vector to store position
        ord = c() 
        abs = c()
        # For all the grid element
        for (i in 1:length(ygrid)) {
            # Store grid position
            ord = c(ord, rep(ygrid[i], times=2))
            abs = c(abs, xmin, xmax)
        }
        # Create a tibble to store all the position
        plot_grid = tibble(abs=as.Date(abs), ord=ord)
        # Plot the y grid
        p = p +
            geom_line(data=plot_grid, 
                      aes(x=abs, y=ord, group=ord),
                      color='grey85',
                      size=0.15)
    }

    ### Data ###
    # If it is a square root flow or flow
    if (var == 'sqrt(Q)' | var == 'Q') {
        # Plot the data as line
        p = p +
            geom_line(aes(x=df_data_code$Date, y=df_data_code$Value),
                      color='grey20',
                      size=0.3,
                      lineend="round")
    } else {
        # Plot the data as point
        p = p +
            geom_point(aes(x=df_data_code$Date, y=df_data_code$Value),
                       shape=19, color='grey50', alpha=1,
                       stroke=0, size=1)
    }

    ### Missing data ###
    # If the option is TRUE
    if (missRect) {
        # Remove NA data
        NAdate = df_data_code$Date[is.na(df_data_code$Value)]
        # Get the difference between each point of date data without NA
        dNAdate = diff(NAdate)
        # If difference of day is not 1 then
        # it is TRUE for the beginning of each missing data period 
        NAdate_Down = NAdate[append(Inf, dNAdate) != 1]
        # If difference of day is not 1 then
        # it is TRUE for the ending of each missing data period 
        NAdate_Up = NAdate[append(dNAdate, Inf) != 1]

        # Plot the missing data period
        p = p +
            geom_rect(aes(xmin=NAdate_Down, 
                          ymin=minQ_win, 
                          xmax=NAdate_Up, 
                          ymax=maxQ_win),
                      linetype=0, fill='Wheat', alpha=0.4)
    }

    ### Trend ###
    # If there is trends
    if (!is.null(df_trend_code)) {

        # Extract start and end of trend periods
        Start = df_trend_code$period_start
        End = df_trend_code$period_end
        # Get the name of the different period
        UStart = levels(factor(Start))        
        UEnd = levels(factor(End))

        # Compute the max of different start and end
        # so the number of different period
        nPeriod_trend = max(length(UStart), length(UEnd))

        # Blank tibble to store trend data and legend data
        plot_trend = tibble()
        leg_trend = tibble()
        # For all the different period
        for (i in 1:nPeriod_trend) {

            # Extracts the corresponding data for the period
            df_data_code_per =
                df_data_code[df_data_code$Date >= Start[i] 
                             & df_data_code$Date <= End[i],]

            # Computes the mean of the data on the period
            dataMean = mean(df_data_code_per$Value,
                            na.rm=TRUE)
            
            # Get the trend associated to the first period
            df_trend_code_per = 
                df_trend_code[df_trend_code$period_start == Start[i] 
                              & df_trend_code$period_end == End[i],]
            
            # Number of trend selected
            Ntrend = nrow(df_trend_code_per)
            # If the number of trend is greater than a unique one
            if (Ntrend > 1) {
                # Extract only the first hence it is the same period
                df_trend_code_per = df_trend_code_per[1,]
            }            

            # Search for the index of the closest existing date 
            # to the start of the trend period of analysis
            iStart = which.min(abs(df_data_code$Date - Start[i]))
            # Same for the end
            iEnd = which.min(abs(df_data_code$Date - End[i]))

            # Get the start and end date associated
            xmin = df_data_code$Date[iStart]
            xmax = df_data_code$Date[iEnd]

            # If there is a x axis limit
            if (!is.null(axis_xlim)) {
                # If the min of the current period
                # is smaller than the min of the x axis limit
                if (xmin < axis_xlim[1]) {
                    # The min of the period is the min
                    # of the x axis limit
                    xmin = axis_xlim[1]
                }
                # Same for end
                if (xmax > axis_xlim[2]) {
                    xmax = axis_xlim[2]
                } 
            }

            # Create vector to store x data
            abs = c(xmin, xmax)
            # Convert the number of day to the unit of the period
            abs_num = as.numeric(abs) / unit2day
            # Compute the y of the trend
            ord = abs_num * df_trend_code_per$trend +
                df_trend_code_per$intercept

            # Create temporary tibble with variable to plot trend
            # for each period
            plot_trendtmp = tibble(abs=abs, ord=ord, period=i)
            # Bind it to the main tibble to store it with other period
            plot_trend = bind_rows(plot_trend, plot_trendtmp)

            # If there is a x axis limit
            if (!is.null(axis_xlim)) {
                # The x axis limit is selected
                codeDate = axis_xlim
            } else {
                # The entire date data is selected
                codeDate = df_data_code$Date
            }
            # The y limit is stored in a vector
            codeValue = c(minQ_win, maxQ_win)

            # Position of the x beginning and end of the legend symbol
            x = gpct(1.5, codeDate, shift=TRUE)
            xend = x + gpct(3, codeDate)

            # Spacing between legend symbols
            dy = gpct(9, codeValue, min_lim=ymin_lim)
            # Position of the y beginning and end of the legend symbol
            y = gpct(92, codeValue,
                     min_lim=ymin_lim, shift=TRUE) - (i-1)*dy
            yend = y

            # Position of x for the beginning of the associated text
            xt = xend + gpct(1, codeDate)

            # Position of the background rectangle of the legend
            xminR = x - gpct(1, codeDate)
            yminR = y - gpct(5, codeValue, min_lim=ymin_lim)
            # If it is a flow variable
            if (type == 'sévérité') {
                xmaxR = x + gpct(32.5, codeDate)
            # If it is a date variable
            } else if (type == 'saisonnalité') {
                xmaxR = x + gpct(20.5, codeDate)
            }
            ymaxR = y + gpct(5, codeValue, min_lim=ymin_lim)

            # Gets the trend
            trend = df_trend_code_per$trend
            # Gets the p value
            pVal = df_trend_code_per$p
            # Converts it to character
            pValC = as.character(format(round(pVal, 2),
                                         nsmall=2))
            # Computes the mean trend
            trendMean = trend/dataMean
            # Computes the magnitude of the trend
            power = get_power(trend)
            # Converts it to character
            powerC = as.character(power)
            # If the power is positive
            if (powerC >= 0) {
                # Adds a space in order to compensate for the minus
                # sign that sometimes is present for the other periods
                spaceC = '  '
            # Otherwise
            } else {
                # No space is added
                spaceC = ''
            }

            # Gets the power of ten of magnitude
            brk = 10^power
            # Converts trend to character for sientific expression
            trendC = as.character(format(round(trend / brk, 2),
                                         nsmall=2))
            # If the trend is positive