Newer
Older
# \\\
# Copyright 2021-2022 Louis Héraut*1
#
# *1 INRAE, France
# louis.heraut@inrae.fr
#
# This file is part of ash R toolbox.
#
# ash R toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
#
# ash R toolbox is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ash R toolbox. If not, see <https://www.gnu.org/licenses/>.
# ///
#
#
# plotting/datasheet.R
#
# Regroups all the graphical tools to generates the datasheets. More precisely, the 'datasheet_panel' function manages all the call for each station of the different graphical functions that generates info header, time serie visualisation and trend analysis graphs for every variable. It also deals with the arranging of all the plots in a single PDF page.
# Sourcing R file
source('processing/analyse.R', encoding='UTF-8') # hydrograph
source('plotting/shortcut.R', encoding='UTF-8')
## 1. DATASHEET PANEL MANAGER ________________________________________
# Manages datasheets creations for all stations. Makes the call to
# the different headers, trend analysis graphs and realises arranging
# every plots.
datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, axis_xlim, colorForce, info_header, time_header, foot_note, layout_matrix, info_height, time_ratio, var_ratio, foot_height, resources_path, logo_dir, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp, df_page=NULL) {
# The percentage of augmentation and diminution of the min
# and max limits for y axis
lim_pct = 10
# Number of variable/plot
nbp = length(list_df2plot)
# Get all different stations code
Code = levels(factor(df_meta$code))
nCode = length(Code)
if (!is.null(trend_period)) {
# Convert 'trend_period' to list
trend_period = as.list(trend_period)
# Number of trend period
nPeriod_trend = length(trend_period)
# Extracts the min and the max of the mean trend for all the station
res = short_trendExtremes(list_df2plot, Code, nPeriod_trend, nbp, nCode, colorForce)
# Blank vector to store the max number of digit of label for
# each station
NspaceMax = c()
# For all the station
for (code in Code) {
# Default max digit
NspaceMax_code = 0
# If the time header is given it adds one to the number of plot
nbpMod = nbp + as.numeric(!is.null(time_header))
# For all type of graph
for (i in 1:nbpMod) {
if (i > nbp) {
# Extracts the data serie corresponding to the code
df_data_code = time_header[time_header$code == code,]
type = 'sévérité'
} else {
# Extracts the data corresponding to the current variable
df_data = list_df2plot[[i]]$data
# Extracts the type corresponding to the current variable
type = list_df2plot[[i]]$type
# Extracts the data corresponding to the code
df_data_code = df_data[df_data$code == code,]
}
# If variable type is date
if (type == 'saisonnalité') {
# The number of digit is 6 because months are display
# with 3 characters
Nspace = 6
# If it is a flow variable
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Gets the max number of digit on the label
maxtmp = max(df_data_code$Value, na.rm=TRUE)
# Taking into account of the augmentation of
# max for the window
maxtmp = maxtmp * (1 + lim_pct/100)
# If the max is greater than 10
if (maxtmp >= 10) {
# The number of digit is the magnitude plus
# the first number times 2
Nspace = (get_power(maxtmp) + 1)*2
# Plus spaces between thousands hence every 8 digits
Nspace = Nspace + as.integer(Nspace/8)
# If the max is less than 10 and greater than 1
} else if (maxtmp < 10 & maxtmp >= 1) {
# The number of digit is the magnitude plus
# the first number times 2 plus 1 for the dot
# and 2 for the first decimal
Nspace = (get_power(maxtmp) + 1)*2 + 3
# If the max is less than 1 (and obviously more than 0)
} else if (maxtmp < 1) {
# Fixes the number of significant decimals to 3
maxtmp = signif(maxtmp, 3)
# The number of digit is the number of character
# of the max times 2 minus 1 for the dots that
# count just 1 space
Nspace = nchar(as.character(maxtmp))*2 - 1
}
}
# If it is the temporary max number
if (Nspace > NspaceMax_code) {
# Stores it
NspaceMax_code = Nspace
}
}
# Stores the max digit number for labels of a station
NspaceMax = c(NspaceMax, NspaceMax_code)
}
# For all the station
for (k in 1:nCode) {
# Gets the code
code = Code[k]
# Print code of the station for the current plotting
print(paste("Datasheet for station : ", code,
" (", round(k/nCode*100, 0), " %)",
sep=''))
# Number of header (is info and time serie are needed)
nbh = as.numeric(!is.null(info_header)) + as.numeric(!is.null(time_header))
# Actualises the number of plot
nbg = nbp + nbh + as.numeric(foot_note)
# Opens a blank list to store plot
P = vector(mode='list', length=nbg)
# If the info header is needed
# Gets the info plot
Hinfo = info_panel(list_df2plot,
df_meta,
trend_period=trend_period,
mean_period=mean_period,
periodHyd=mean_period[[1]],
# If the time header is given
if (!is.null(time_header)) {
# Extracts the data serie corresponding to the code
time_header_code = time_header[time_header$code == code,]
if (is.null(axis_xlim)) {
# Gets the limits of the time serie
axis_xlim_code = c(min(time_header_code$Date),
max(time_header_code$Date))
} else {
axis_xlim_code = axis_xlim
}
# Gets the time serie plot
Htime = time_panel(time_header_code, df_trend_code=NULL,
unit2day=365.25, var='Q', type='sévérité',
grid=TRUE, ymin_lim=0,
NspaceMax=NspaceMax[k],
first=TRUE, lim_pct=lim_pct)
# Stores it
P[[2]] = Htime
}
# Computes the number of column of plot asked on the datasheet
nbcol = ncol(as.matrix(layout_matrix))
# For all variable
for (i in 1:nbp) {
# Extracts the data corresponding to the current variable
df_data = list_df2plot[[i]]$data
# Extracts the trend corresponding to the
# current variable
df_trend = list_df2plot[[i]]$trend
unit2day = list_df2plot[[i]]$unit2day
missRect = list_df2plot[[i]]$missRect
# Extract the variable of the plot
var = list_df2plot[[i]]$var
type = list_df2plot[[i]]$type
# Extracts the data corresponding to the code
df_data_code = df_data[df_data$code == code,]
# Extracts the trend corresponding to the code
df_trend_code = df_trend[df_trend$code == code,]
# Blank vector to store color
color = c()
if (!is.null(trend_period)) {
# For all the period
for (j in 1:nPeriod_trend) {
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
if (df_trend_code$p[j] <= alpha){
# Extract start and end of trend periods
Start = df_trend_code$period_start[j]
End = df_trend_code$period_end[j]
# Extracts the corresponding data for the period
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
# Same for trend
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
# Computes the number of trend analysis selected
Ntrend = nrow(df_trend_code_per)
# If there is more than one trend on the same period
if (Ntrend > 1) {
# Takes only the first because they are similar
df_trend_code_per = df_trend_code_per[1,]
}
# If it is a flow variable
if (type == 'sévérité') {
# Computes the mean of the data on the period
dataMean = mean(df_data_code_per$Value,
na.rm=TRUE)
# Normalises the trend value by the mean
# of the data
trendValue = df_trend_code_per$trend / dataMean
# If it is a date variable
} else if (type == 'saisonnalité') {
trendValue = df_trend_code_per$trend
}
# Gets the color corresponding to the mean trend
color_res = get_color(trendValue,
minTrendValue[j, i],
maxTrendValue[j, i],
palette_name='perso',
reverse=TRUE)
# Stores it temporarily
colortmp = color_res
}
# Stores the color
color = append(color, colortmp)
grid = FALSE
}
if (var != 'sqrt(Q)' & var != 'Q') {
grid = FALSE
ymin_lim = NULL
} else {
grid = TRUE
ymin_lim = 0
if (is.null(time_header) & i == 1) {
first = TRUE
} else {
first = FALSE
}
# Computes the time panel associated to the current variable
p = time_panel(df_data_code, df_trend_code, var=var,
mean_period=mean_period,
axis_xlim=axis_xlim_code,
unit2day=unit2day, grid=grid,
ymin_lim=ymin_lim, color=color,
NspaceMax=NspaceMax[k], first=first,
last=(i == nbp),
subsection = code
n_page = df_page$n[nrow(df_page)] + 1
df_page = bind_rows(
df_page,
tibble(section=section,
subsection=subsection,
n=n_page))
}
if (foot_note) {
footName = 'fiche station'
if (is.null(df_page)) {
n_page = k
}
foot = foot_panel(footName, n_page, resources_path,
AEAGlogo_file, INRAElogo_file,
FRlogo_file, foot_height)
P[[nbg]] = foot
}
# Convert the 'layout_matrix' to a matrix if it is not already
layout_matrix = as.matrix(layout_matrix)
# Number of element of the matrix
nel = nrow(layout_matrix)*ncol(layout_matrix)
# Gets the place where there is NA value
idNA = which(is.na(layout_matrix), arr.ind=TRUE)
LM = layout_matrix
# Adds non existing plot is where the is NA
LM[idNA] = seq(max(layout_matrix, na.rm=TRUE) + 1,
max(layout_matrix, na.rm=TRUE) + 1 +
nel)
# Shifts all plots to be coherent with the adding of header
LM = LM + nbh
if (!is.null(info_header)) {
id_info = nbh - 1
LM = rbind(nbh - 1, LM)
info_ratio = 0
}
if (foot_note) {
id_foot = length(LM) + 1
LM = rbind(LM, id_foot)
} else {
foot_height = 0
}
LMcol = ncol(LM)
LMrow = nrow(LM)
LM = rbind(rep(99, times=LMcol), LM, rep(99, times=LMcol))
LMrow = nrow(LM)
LM = cbind(rep(99, times=LMrow), LM, rep(99, times=LMrow))
LMcol = ncol(LM)
Norm_ratio = height * (time_ratio + var_ratio*nbp) / (height - 2*margin_size - foot_height - info_height)
time_height = height * time_ratio / Norm_ratio
var_height = height * var_ratio / Norm_ratio
Hcut = LM[, 2]
heightLM[Hcut == id_info] = info_height
heightLM[Hcut == id_time] = time_height
heightLM[Hcut > nbh & Hcut < id_foot] = var_height
Wcut = LM[(nrow(LM)-1),]
widthLM = rep(col_width, times=LMcol)
# Plot the graph as the layout
plot = grid.arrange(grobs=P, layout_matrix=LM,
heights=heightLM, widths=widthLM)
# Saving
ggsave(plot=plot,
path=outdirTmp,
filename=paste(as.character(code), '.pdf', sep=''),
width=width, height=height, units='cm', dpi=100)
}
## 2. PANEL FOR THE DATASHEET __________________________________
### 2.1. Time panel __________________________________________________
time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, colorForce=FALSE, missRect=FALSE, unit2day=365.25, trend_period=NULL, mean_period=NULL, axis_xlim=NULL, grid=TRUE, ymin_lim=NULL, color=NULL, NspaceMax=NULL, first=FALSE, last=FALSE, lim_pct=10) {
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Compute max and min of flow
maxQ = max(df_data_code$Value, na.rm=TRUE)
minQ = min(df_data_code$Value, na.rm=TRUE)
spread = maxQ - minQ
nTick = 6
maxQ_win = maxQ + spread*lim_pct/100
minQ_win = minQ - spread*lim_pct/100
if (minQ_win < 0) {
minQtmp_lim = 0
} else {
minQtmp_lim = minQ_win
}
if (!is.null(ymin_lim)) {
minQ_win = ymin_lim
}
spreadtmp = maxQ_win - minQtmp_lim
breakQtmp = spreadtmp / (nTick - 1)
GradQ_10 = c(0, 1, 1.5, 2, 2.5, 3, 4, 5, 10)
Grad = GradQ_10 * 10^get_power(breakQtmp)
dist = abs(Grad - breakQtmp)
idGrad = which.min(dist)
breakQ = Grad[idGrad]
if (is.null(ymin_lim)) {
Grad = GradQ_10 * 10^get_power(minQtmp_lim)
Grad[Grad > minQtmp_lim] = NA
dist = abs(Grad - minQtmp_lim)
idGrad = which.min(dist)
minQ_lim = Grad[idGrad]
} else {
minQ_lim = ymin_lim
}
maxQ_list = c()
i = 1
maxQtmp = minQ_lim
while (maxQtmp <= maxQ_win) {
maxQtmp = minQ_lim + i*breakQ
i = i + 1
}
maxQ_lim = maxQtmp
axis_xlim = as.Date(axis_xlim)
minor_minDatetmp_lim = axis_xlim[1]
minor_maxDatetmp_lim = axis_xlim[2]
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# Otherwise
} else {
minor_minDatetmp_lim = as.Date(df_data_code$Date[1])
minor_maxDatetmp_lim =
as.Date(df_data_code$Date[length(df_data_code$Date)])
}
minor_minDatetmp_lim = as.numeric(format(minor_minDatetmp_lim, "%Y"))
minor_maxDatetmp_lim = as.numeric(format(minor_maxDatetmp_lim, "%Y"))
minDatetmp_lim = minor_minDatetmp_lim
maxDatetmp_lim = minor_maxDatetmp_lim
nTick = 8
spreadtmp = minor_maxDatetmp_lim - minor_minDatetmp_lim
breakDatetmp = spreadtmp / (nTick - 1)
GradDate_10 = c(1, 2.5, 5, 10)
Grad = GradDate_10 * 10^get_power(breakDatetmp)
dist = abs(Grad - breakDatetmp)
idGrad = which.min(dist)
breakDate = Grad[idGrad]
listDate = seq(round(minDatetmp_lim, -1)-10^(get_power(breakDate)+1),
round(maxDatetmp_lim, -1)+10^(get_power(breakDate)+1),
by=breakDate)
minDate_lim = listDate[which.min(abs(listDate - minDatetmp_lim))]
maxDate_lim = listDate[which.min(abs(listDate - maxDatetmp_lim))]
minDate_lim = as.Date(paste(minDate_lim, '-01-01', sep=''))
maxDate_lim = as.Date(paste(maxDate_lim, '-01-01', sep=''))
minor_breakDatetmp = breakDate / 5
GradMinorDate_10 = c(1, 2, 5, 10)
Grad = GradMinorDate_10 * 10^get_power(minor_breakDatetmp)
dist = abs(Grad - minor_breakDatetmp)
idGrad = which.min(dist)
minor_breakDate = Grad[idGrad]
listDate = seq(round(minor_minDatetmp_lim,
-1) - 10^(get_power(minor_breakDate)+1),
round(minor_maxDatetmp_lim,
-1) + 10^(get_power(minor_breakDate)+1),
by=minor_breakDate)
minor_minDate_lim =
listDate[which.min(abs(listDate - minor_minDatetmp_lim))]
minor_maxDate_lim =
listDate[which.min(abs(listDate - minor_maxDatetmp_lim))]
minor_minDate_lim = as.Date(paste(round(minor_minDate_lim),
minor_maxDate_lim = as.Date(paste(round(minor_maxDate_lim),
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Open new plot
p = ggplot() + theme_ash
# Margins
if (first) {
p = p +
theme(plot.margin=margin(t=2.5, r=0, b=3, l=0, unit="mm"))
} else if (last) {
p = p +
theme(plot.margin=margin(t=2, r=0, b=0, l=0, unit="mm"))
} else if (first & last) {
p = p +
theme(plot.margin=margin(t=2.5, r=0, b=0, l=0, unit="mm"))
} else {
p = p +
theme(plot.margin=margin(t=2, r=0, b=2, l=0, unit="mm"))
}
## Sub period background ##
if (!is.null(trend_period)) {
# Convert trend period to list if it is not
trend_period = as.list(trend_period)
# Fix a disproportionate minimum for period
Imin = 10^99
# For all the sub period of analysis in 'trend_period'
for (per in trend_period) {
# Compute time interval of period
I = interval(per[1], per[2])
# If it is the smallest interval
if (I < Imin) {
# Store it
Imin = I
# Fix min period of analysis
trend_period_min = as.Date(per)
}
}
minPer = trend_period_min[1]
maxPer = trend_period_min[2]
# If there is an 'axis_lim'
if (!is.null(axis_xlim)) {
# If the temporary start of period is smaller
# than the fix start of x axis limit
if (minPer < axis_xlim[1]) {
# Set the start of the period to the start of
# the x axis limit
minPer = axis_xlim[1]
}
# If the temporary end of period plus one year
# is smaller than the fix end of x axis limit
if (maxPer + years(1) < axis_xlim[2]) {
# Set the start of the period to the start of
# the x axis limit
maxPer = axis_xlim[2]
}
# If there is no 'axis_lim'
} else {
if (minPer < min(df_data_code$Date)) {
minPer = min(df_data_code$Date)
}
if (maxPer > max(df_data_code$Date)) {
maxPer = max(df_data_code$Date)
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
}
}
# Draw rectangle to delimiting the sub period
p = p +
geom_rect(aes(xmin=minPer,
ymin=minQ_win,
xmax=maxPer,
ymax= maxQ_win),
linetype=0, fill='grey97')
}
## Mean step ##
# If there is a 'mean_period'
if (!is.null(mean_period)) {
# Convert 'mean_period' to list
mean_period = as.list(mean_period)
# Number of mean period
nPeriod_mean = length(mean_period)
# Blank tibble to store variable in order to plot
# rectangle for mean period
plot_mean = tibble()
# Blank tibble to store variable in order to plot
# upper limit of rectangle for mean period
plot_line = tibble()
# For all mean period
for (j in 1:nPeriod_mean) {
# Get the current start and end of the sub period
xmin = as.Date(mean_period[[j]][1])
xmax = as.Date(mean_period[[j]][2])
# Extract the data corresponding to this sub period
df_data_code_per =
df_data_code[df_data_code$Date >= xmin
& df_data_code$Date <= xmax,]
# If the min over the sub period is greater
# than the min of the entier period and
# it is not the first sub period
if (xmin > min(df_data_code$Date) & j != 1) {
# Substract 6 months to be in the middle of
# the previous year
xmin = add_months(xmin, -6)
}
# If it is not a flow or sqrt of flow time serie and
# it is the first period
if (var != 'sqrt(Q)' & var != 'Q' & j == 1) {
# If there is an x axis limit
if (!is.null(axis_xlim)) {
# If the min of the period is before the x axis min
if (xmin < axis_xlim[1]) {
# The min for the sub period is the x axis
xmin = axis_xlim[1]
}
}
}
# If the max over the sub period is smaller
# than the max of the entier period and
# it is not the last sub period
if (xmax < max(df_data_code$Date) & j != nPeriod_mean) {
# Add 6 months to be in the middle of
# the following year
xmax = add_months(xmax, 6)
}
# If it is not a flow or sqrt of flow time serie and
# it is the last period
if (var != 'sqrt(Q)' & var != 'Q' & j == nPeriod_mean) {
# If there is an x axis limit
if (!is.null(axis_xlim)) {
# If the max of the period plus 1 year
# is smaller thant the max of the x axis limit
if (xmax + years(1) < axis_xlim[2]) {
# Add one year to the max to include
# the entire last year graphically
xmax = xmax + years(1)
} else {
# The max of this sub period is the max
# of the x axis limit
xmax = axis_xlim[2]
}
# If there is no axis limit
} else {
# Add one year to the max to include
# the entire last year graphically
xmax = xmax + years(1)
}
}
# Mean of the flow over the sub period
ymax = mean(df_data_code_per$Value, na.rm=TRUE)
# Create temporary tibble with variable
# to create rectangle for mean step
plot_meantmp = tibble(xmin=xmin, xmax=xmax,
ymin=minQ_win, ymax=ymax, period=j)
# Bind it to the main tibble to store it with other period
plot_mean = bind_rows(plot_mean, plot_meantmp)
# Create vector for the upper limit of the rectangle
abs = c(xmin, xmax)
ord = c(ymax, ymax)
# Create temporary tibble with variable
# to create upper limit for rectangle
plot_linetmp = tibble(abs=abs, ord=ord, period=j)
# Bind it to the main tibble to store it with other period
plot_line = bind_rows(plot_line, plot_linetmp)
}
# Plot rectangles
p = p +
geom_rect(data=plot_mean,
aes(xmin=xmin, ymin=ymin,
xmax=xmax, ymax=ymax),
linetype=0, fill='grey93')
# Plot upper line for rectangle
p = p +
geom_line(data=plot_line,
aes(x=abs, y=ord, group=period),
color='grey85',
size=0.15)
# for all the sub periods except the last one
for (i in 1:(nPeriod_mean - 1)) {
# Computes the time difference in days between periods
dPeriod = abs(as.Date(mean_period[[i+1]][1]) - as.Date(mean_period[[i]][2]))
if (dPeriod < 10) {
# The x limit is the x max of the ith rectangle
xLim = plot_mean$xmax[i]
# The y limit of rectangle is the max of
# the two neighboring mean step rectangle
yLim = max(c(plot_mean$ymax[i], plot_mean$ymax[i+1]))
# Make a tibble to store data
plot_lim = tibble(x=c(xLim, xLim), y=c(minQ_win, yLim))
# Plot the limit of rectangles
p = p +
geom_line(data=plot_lim, aes(x=x, y=y),
linetype='dashed', size=0.15,
color='grey85')
} else {
# Takes the x and y limits for the ith rectangle
xLim_i = plot_mean$xmax[i]
yLim_i = plot_mean$ymax[i]
# Takes the x and y limits for the i+1th rectangle
xLim_i1 = plot_mean$xmin[i+1]
yLim_i1 = plot_mean$ymax[i+1]
# Make a tibble to store data
plot_lim = tibble(x_i=c(xLim_i, xLim_i),
y_i=c(minQ_win, yLim_i),
x_i1=c(xLim_i1, xLim_i1),
y_i1=c(minQ_win, yLim_i1))
# Plot the limit of rectangles
p = p +
geom_line(data=plot_lim, aes(x=x_i, y=y_i),
linetype='dashed', size=0.15,
color='grey85') +
geom_line(data=plot_lim, aes(x=x_i1, y=y_i1),
linetype='dashed', size=0.15,
color='grey85')
}
}
}
### Grid ###
if (grid) {
# If there is no axis limit
if (is.null(axis_xlim)) {
# The min and the max is set by
# the min and the max of the date data
xmin = min(df_data_code$Date)
xmax = max(df_data_code$Date)
} else {
# Min and max is set with the limit axis parameter
xmin = axis_xlim[1]
xmax = axis_xlim[2]
}
# Create a vector for all the y grid position
ygrid = seq(minQ_win, maxQ_win, breakQ)
# Blank vector to store position
ord = c()
abs = c()
# For all the grid element
for (i in 1:length(ygrid)) {
# Store grid position
ord = c(ord, rep(ygrid[i], times=2))
abs = c(abs, xmin, xmax)
}
# Create a tibble to store all the position
plot_grid = tibble(abs=as.Date(abs), ord=ord)
# Plot the y grid
p = p +
geom_line(data=plot_grid,
aes(x=abs, y=ord, group=ord),
color='grey85',
size=0.15)
}
### Data ###
# If it is a square root flow or flow
if (var == 'sqrt(Q)' | var == 'Q') {
# Plot the data as line
p = p +
geom_line(aes(x=df_data_code$Date, y=df_data_code$Value),
color='grey20',
size=0.3,
lineend="round")
} else {
# Plot the data as point
p = p +
geom_point(aes(x=df_data_code$Date, y=df_data_code$Value),
shape=19, color='grey50', alpha=1,
stroke=0, size=1)
}
### Missing data ###
# If the option is TRUE
if (missRect) {
# Remove NA data
NAdate = df_data_code$Date[is.na(df_data_code$Value)]
# Get the difference between each point of date data without NA
dNAdate = diff(NAdate)
# If difference of day is not 1 then
# it is TRUE for the beginning of each missing data period
NAdate_Down = NAdate[append(Inf, dNAdate) != 1]
# If difference of day is not 1 then
# it is TRUE for the ending of each missing data period
NAdate_Up = NAdate[append(dNAdate, Inf) != 1]
# Plot the missing data period
p = p +
geom_rect(aes(xmin=NAdate_Down,
ymin=minQ_win,
xmax=NAdate_Up,
ymax=maxQ_win),
linetype=0, fill='Wheat', alpha=0.4)
}
### Trend ###
# If there is trends
if (!is.null(df_trend_code)) {
# Extract start and end of trend periods
Start = df_trend_code$period_start
End = df_trend_code$period_end
# Get the name of the different period
UStart = levels(factor(Start))
UEnd = levels(factor(End))
# Compute the max of different start and end
# so the number of different period
nPeriod_trend = max(length(UStart), length(UEnd))
# Blank tibble to store trend data and legend data
plot_trend = tibble()
leg_trend = tibble()
# For all the different period
for (i in 1:nPeriod_trend) {
# Extracts the corresponding data for the period
df_data_code_per =
df_data_code[df_data_code$Date >= Start[i]
& df_data_code$Date <= End[i],]
# Computes the mean of the data on the period
dataMean = mean(df_data_code_per$Value,
na.rm=TRUE)
# Get the trend associated to the first period
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start[i]
& df_trend_code$period_end == End[i],]
# Number of trend selected
Ntrend = nrow(df_trend_code_per)
# If the number of trend is greater than a unique one
if (Ntrend > 1) {
# Extract only the first hence it is the same period
df_trend_code_per = df_trend_code_per[1,]
}
# Search for the index of the closest existing date
# to the start of the trend period of analysis
iStart = which.min(abs(df_data_code$Date - Start[i]))
# Same for the end
iEnd = which.min(abs(df_data_code$Date - End[i]))
# Get the start and end date associated
xmin = df_data_code$Date[iStart]
xmax = df_data_code$Date[iEnd]
# If there is a x axis limit
if (!is.null(axis_xlim)) {
# If the min of the current period
# is smaller than the min of the x axis limit
if (xmin < axis_xlim[1]) {
# The min of the period is the min
# of the x axis limit
xmin = axis_xlim[1]
}
# Same for end
if (xmax > axis_xlim[2]) {
xmax = axis_xlim[2]
}
}
# Create vector to store x data
abs = c(xmin, xmax)
# Convert the number of day to the unit of the period
abs_num = as.numeric(abs) / unit2day
# Compute the y of the trend
ord = abs_num * df_trend_code_per$trend +
df_trend_code_per$intercept
# Create temporary tibble with variable to plot trend
# for each period
plot_trendtmp = tibble(abs=abs, ord=ord, period=i)
# Bind it to the main tibble to store it with other period
plot_trend = bind_rows(plot_trend, plot_trendtmp)
# If there is a x axis limit
if (!is.null(axis_xlim)) {
# The x axis limit is selected
codeDate = axis_xlim
} else {
# The entire date data is selected
codeDate = df_data_code$Date
}
# The y limit is stored in a vector
codeValue = c(minQ_win, maxQ_win)
# Position of the x beginning and end of the legend symbol
x = gpct(1.5, codeDate, shift=TRUE)
xend = x + gpct(3, codeDate)
# Spacing between legend symbols
dy = gpct(9, codeValue, min_lim=ymin_lim)
# Position of the y beginning and end of the legend symbol
y = gpct(92, codeValue,
min_lim=ymin_lim, shift=TRUE) - (i-1)*dy
yend = y
# Position of x for the beginning of the associated text
xt = xend + gpct(1, codeDate)
# Position of the background rectangle of the legend
xminR = x - gpct(1, codeDate)
yminR = y - gpct(5, codeValue, min_lim=ymin_lim)
# If it is a flow variable
if (type == 'sévérité') {
xmaxR = x + gpct(32.5, codeDate)
# If it is a date variable
} else if (type == 'saisonnalité') {
xmaxR = x + gpct(20.5, codeDate)
}
ymaxR = y + gpct(5, codeValue, min_lim=ymin_lim)
# Gets the trend
trend = df_trend_code_per$trend
# Gets the p value
pVal = df_trend_code_per$p
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# if (colorForce) {
# if (pVal <= alpha) {
# colorLine = color[i]
# colorLabel = color[i]
# } else {
# colorLine = color[i]
# colorLabel = 'grey85'
# }
# } else {
# if (pVal <= alpha) {
# colorLine = color[i]
# colorLabel = color[i]
# } else {
# colorLine = 'grey85'
# colorLabel = 'grey85'
# }
# }
if (pVal <= alpha) {
colorLine = color[i]
colorLabel = color[i]
} else {
colorLine = 'grey85'
colorLabel = 'grey85'