Newer
Older
# Usefull library
library(ggplot2)
library(scales)
library(qpdf)
library(gridExtra)
library(gridtext)
library(dplyr)
library(grid)
library(ggh4x)
library(RColorBrewer)
# Sourcing R file
source('plotting/panel.R', encoding='latin1')
panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_opt='', filename_opt='', variable='', df_trend=NULL, p_threshold=0.1, unit2day=365.25, type='', period=NULL, missRect=FALSE, time_header=NULL, info_header=TRUE, time_ratio=2, var_ratio=3) {
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
if (all(class(df_data) != 'list')) {
df_data = list(df_data)
}
nbp = length(df_data)
if (all(class(df_trend) != 'list')) {
df_trend = list(df_trend)
if (length(df_trend) == 1) {
df_trend = replicate(nbp, df_trend)
}}
if (all(class(p_threshold) != 'list')) {
p_threshold = list(p_threshold)
if (length(p_threshold) == 1) {
p_threshold = replicate(nbp, p_threshold)
}}
if (all(class(unit2day) != 'list')) {
unit2day = list(unit2day)
if (length(unit2day) == 1) {
unit2day = replicate(nbp, unit2day)
}}
if (all(class(type) != 'list')) {
type = list(type)
if (length(type) == 1) {
type = replicate(nbp, type)
}}
if (all(class(missRect) != 'list')) {
missRect = list(missRect)
if (length(missRect) == 1) {
missRect = replicate(nbp, missRect)
}}
list_df2plot = vector(mode='list', length=nbp)
minTrend = c()
maxTrend = c()
for (i in 1:nbp) {
df2plot = list(data=df_data[[i]],
trend=df_trend[[i]],
p_threshold=p_threshold[[i]],
unit2day=unit2day[[i]],
type=type[[i]],
missRect=missRect[[i]])
okTrend = df_trend[[i]]$trend[df_trend[[i]]$p <= p_threshold[[i]]]
minTrend[i] = min(okTrend, na.rm=TRUE)
maxTrend[i] = max(okTrend, na.rm=TRUE)
list_df2plot[[i]] = df2plot
}
outfile = "Panels"
if (filename_opt != '') {
outfile = paste(outfile, '_', filename_opt, sep='')
}
outfile = paste(outfile, '.pdf', sep='')
# If there is not a dedicated figure directory it creats one
outdir = file.path(figdir, filedir_opt, sep='')
if (!(file.exists(outdir))) {
dir.create(outdir)
}
outdirTmp = file.path(outdir, 'tmp')
if (!(file.exists(outdirTmp))) {
dir.create(outdirTmp)
}
# Get all different stations code
Code = levels(factor(df_meta$code))
nCode = length(Code)
for (code in Code) {
# Print code of the station for the current plotting
print(paste("Plotting for sation :", code))
nbh = as.numeric(info_header) + as.numeric(!is.null(time_header))
nbg = nbp + nbh
P = vector(mode='list', length=nbg)
if (info_header) {
Htext = text_panel(code, df_meta)
P[[1]] = Htext
}
if (!is.null(time_header)) {
time_header_code = time_header[time_header$code == code,]
Htime = time_panel(time_header_code, df_trend_code=NULL,
period=period, missRect=TRUE,
unit2day=365.25, type='Q')
P[[2]] = Htime
}
nbcol = ncol(as.matrix(layout_matrix))
for (i in 1:nbp) {
df_data = list_df2plot[[i]]$data
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
unit2day = list_df2plot[[i]]$unit2day
missRect = list_df2plot[[i]]$missRect
type = list_df2plot[[i]]$type
df_data_code = df_data[df_data$code == code,]
df_trend_code = df_trend[df_trend$code == code,]
if (df_trend_code$p <= p_threshold){
color_res = get_color(df_trend_code$trend,
minTrend[i],
maxTrend[i],
palette_name='perso',
reverse=FALSE)
color = color_res$color
palette = color_res$palette
} else {
color = NULL
palette = NULL
}
p = time_panel(df_data_code, df_trend_code, type=type,
p_threshold=p_threshold, missRect=missRect,
unit2day=unit2day, last=(i > nbp-nbcol),
color=color)
P[[i+nbh]] = p
}
layout_matrix = as.matrix(layout_matrix)
nel = nrow(layout_matrix)*ncol(layout_matrix)
idNA = which(is.na(layout_matrix), arr.ind=TRUE)
layout_matrix[idNA] = seq(max(layout_matrix, na.rm=TRUE) + 1,
max(layout_matrix, na.rm=TRUE) + 1 +
nel)
layout_matrix_H = layout_matrix + nbh
LM = c()
LMcol = ncol(layout_matrix_H)
LMrow = nrow(layout_matrix_H)
for (i in 1:(LMrow+nbh)) {
} else if (!is.null(time_header) & i == 2) {
LM = rbind(LM,
matrix(rep(rep(i, times=LMcol),
times=time_ratio),
ncol=LMcol, byrow=TRUE))
# if (i <= nbh) {
# LM = rbind(LM, rep(i, times=LMcol))
} else {
LM = rbind(LM,
matrix(rep(layout_matrix_H[i-nbh,],
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
ncol=LMcol, byrow=TRUE))
}}
plot = grid.arrange(grobs=P, layout_matrix=LM)
# plot = grid.arrange(rbind(cbind(ggplotGrob(P[[2]]), ggplotGrob(P[[2]])), cbind(ggplotGrob(P[[3]]), ggplotGrob(P[[3]]))), heights=c(1/3, 2/3))
# Saving
ggsave(plot=plot,
path=outdirTmp,
filename=paste(as.character(code), '.pdf', sep=''),
width=21, height=29.7, units='cm', dpi=100)
}
# mat = matrice_panel(list_df2plot, df_meta)
# # Saving matrix plot
# ggsave(plot=mat,
# path=outdirTmp,
# filename=paste('matrix', '.pdf', sep=''),
# width=21, height=29.7, units='cm', dpi=100)
# PDF combine
pdf_combine(input=file.path(outdirTmp, list.files(outdirTmp)),
output=file.path(outdir, outfile))
unlink(outdirTmp, recursive=TRUE)
}