An error occurred while loading the file. Please try again.
-
Heraut Louis authored16dde0c7
# \\\
# Copyright 2021-2022 Louis Héraut*1
#
# *1 INRAE, France
# louis.heraut@inrae.fr
#
# This file is part of ash R toolbox.
#
# ash R toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
#
# ash R toolbox is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ash R toolbox. If not, see <https://www.gnu.org/licenses/>.
# ///
#
#
# plotting/matrix.R
#
# Allows the creation of a summarizing matrix of trend and break analyses
## 1. MATRIX PANEL
# Generates a summarizing matrix of the trend analyses of all station for different hydrological variables and periods. Also shows difference of means between specific periods.
matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice=NULL, outdirTmp='', outnameTmp='matrix', title=NULL, A3=FALSE) {
# Number of variable/plot
nbp = length(list_df2plot)
# Get all different stations code
Code = levels(factor(df_meta$code))
nCode = length(Code)
# Gets a trend example
df_trend = list_df2plot[[1]]$trend
# Convert 'trend_period' to list
trend_period = as.list(trend_period)
# Number of trend period
nPeriod_trend = length(trend_period)
# Fix the maximal number of period to the minimal possible
nPeriod_max = 0
# For all code
for (code in Code) {
# Extracts the trend corresponding to the code
df_trend_code = df_trend[df_trend$code == code,]
# Extract start and end of trend periods
Start = df_trend_code$period_start
End = df_trend_code$period_end
# Get the name of the different period
UStart = levels(factor(Start))
UEnd = levels(factor(End))
# Compute the max of different start and end
# so the number of different period
nPeriod = max(length(UStart), length(UEnd))
# If the number of period for the trend is greater
# than the current max period, stocks it
if (nPeriod > nPeriod_max) {
nPeriod_max = nPeriod
}
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
}
# Blank list to store time info by station code
Start_code = vector(mode='list', length=nCode)
End_code = vector(mode='list', length=nCode)
Code_code = vector(mode='list', length=nCode)
Periods_code = vector(mode='list', length=nCode)
# For all the code
for (j in 1:nCode) {
# Gets the code
code = Code[j]
# Extracts the trend corresponding to the code
df_trend_code = df_trend[df_trend$code == code,]
# Extract start and end of trend periods
Start = df_trend_code$period_start
End = df_trend_code$period_end
# Get the name of the different period
UStart = levels(factor(Start))
UEnd = levels(factor(End))
# Compute the max of different start and end
# so the number of different period
nPeriod = max(length(UStart), length(UEnd))
# Vector to store trend period
Periods = c()
# For all the trend period
for (i in 1:nPeriod_trend) {
# Stocks period
Periods = append(Periods,
paste(Start[i],
End[i],
sep=' / '))
}
# Stores time info by station
Start_code[[j]] = Start
End_code[[j]] = End
Code_code[[j]] = code
Periods_code[[j]] = Periods
}
# Blank array to store mean of the trend for each
# station, perdiod and variable
TrendMean_code = array(rep(1, nPeriod_trend*nbp*nCode),
dim=c(nPeriod_trend, nbp, nCode))
# For all the trend period
for (j in 1:nPeriod_trend) {
# For all the code
for (k in 1:nCode) {
# Gets the code
code = Code[k]
# For all variable
for (i in 1:nbp) {
# Extracts the data corresponding to the
# current variable
df_data = list_df2plot[[i]]$data
# Extracts the trend corresponding to the
# current variable
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
# Extracts the data corresponding to the code
df_data_code = df_data[df_data$code == code,]
# Extracts the trend corresponding to the code
df_trend_code = df_trend[df_trend$code == code,]
# Gets the associated time info
Start = Start_code[Code_code == code][[1]][j]
End = End_code[Code_code == code][[1]][j]
Periods = Periods_code[Code_code == code][[1]][j]
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
# Extracts the corresponding data for the period
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
# Same for trend
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
# Computes the number of trend analysis selected
Ntrend = nrow(df_trend_code_per)
# If there is more than one trend on the same period
if (Ntrend > 1) {
# Takes only the first because they are similar
df_trend_code_per = df_trend_code_per[1,]
}
# Computes the mean of the data on the period
dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
# Normalises the trend value by the mean of the data
trendMean = df_trend_code_per$trend / dataMean
# If the p value is under the threshold
if (df_trend_code_per$p <= p_threshold){
# Stores the averaged trend
TrendMean_code[j, i, k] = trendMean
# Otherwise
} else {
# Do not stocks it
TrendMean_code[j, i, k] = NA
}
}
}
}
# Computes the min and the max of the mean trend for
# all the station
minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE)
maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE)
# Blank vectors to store info about trend analyses
Periods_trend = c()
NPeriod_trend = c()
Var_trend = list()
Code_trend = c()
Pthresold_trend = c()
TrendMean_trend = c()
DataMean_trend = c()
Fill_trend = c()
Color_trend = c()
# For all the trend period
for (j in 1:nPeriod_trend) {
# For all code
for (code in Code) {
# For all variable
for (i in 1:nbp) {
# Extracts the data corresponding to the current variable
df_data = list_df2plot[[i]]$data
# Extracts the trend corresponding to the
# current variable
df_trend = list_df2plot[[i]]$trend
p_threshold = list_df2plot[[i]]$p_threshold
# Extract the variable of the plot
var = list_df2plot[[i]]$var
# Extracts the data corresponding to the code
df_data_code = df_data[df_data$code == code,]
# Extracts the trend corresponding to the code
df_trend_code = df_trend[df_trend$code == code,]
# Gets the associated time info
Start = Start_code[Code_code == code][[1]][j]
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
End = End_code[Code_code == code][[1]][j]
Periods = Periods_code[Code_code == code][[1]][j]
# Extracts the corresponding data for the period
df_data_code_per =
df_data_code[df_data_code$Date >= Start
& df_data_code$Date <= End,]
# Same for trend
df_trend_code_per =
df_trend_code[df_trend_code$period_start == Start
& df_trend_code$period_end == End,]
# Computes the number of trend analysis selected
Ntrend = nrow(df_trend_code_per)
# If there is more than one trend on the same period
if (Ntrend > 1) {
# Takes only the first because they are similar
df_trend_code_per = df_trend_code_per[1,]
}
# Computes the mean of the data on the period
dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
# Normalises the trend value by the mean of the data
trendMean = df_trend_code_per$trend / dataMean
# If the p value is under the threshold
if (df_trend_code_per$p <= p_threshold){
# Gets the color associated to the averaged trend
color_res = get_color(trendMean,
minTrendMean[j, i],
maxTrendMean[j, i],
palette_name='perso',
reverse=TRUE)
# Specifies the color fill and contour of
# table cells
fill = color_res
color = 'white'
Pthresold = p_thresold
# Otherwise it is not significative
} else {
fill = 'white'
color = 'grey85'
Pthresold = NA
}
# Stores info needed to plot
Periods_trend = append(Periods_trend, Periods)
NPeriod_trend = append(NPeriod_trend, j)
Var_trend = append(Var_trend, var)
Code_trend = append(Code_trend, code)
Pthresold_trend = append(Pthresold_trend, Pthresold)
TrendMean_trend = append(TrendMean_trend, trendMean)
DataMean_trend = append(DataMean_trend, dataMean)
Fill_trend = append(Fill_trend, fill)
Color_trend = append(Color_trend, color)
}
}
}
# If there is a 'mean_period'
if (!is.null(mean_period)) {
# Blank vectors to store info about breaking analysis
Periods_mean = c()
NPeriod_mean = c()
Var_mean = list()
Code_mean = c()
DataMean_mean = c()
BreakMean_mean = c()
# Convert 'mean_period' to list
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
mean_period = as.list(mean_period)
# Number of mean period
nPeriod_mean = length(mean_period)
# Blank array to store difference of mean between two periods
BreakMean_code = array(rep(1, nPeriod_mean*nbp*nCode),
dim=c(nPeriod_mean, nbp, nCode))
# Blank array to store mean for a temporary period in order
# to compute the difference of mean with a second period
dataMeantmp = array(rep(NA, nbp*nCode),
dim=c(nbp, nCode))
# For all period of breaking analysis
for (j in 1:nPeriod_mean) {
# For all the code
for (k in 1:nCode) {
# Gets the code
code = Code[k]
# For all variable
for (i in 1:nbp) {
# Extracts the data corresponding to
# the current variable
df_data = list_df2plot[[i]]$data
# Extract the variable of the plot
var = list_df2plot[[i]]$var
# Extracts the data corresponding to the code
df_data_code = df_data[df_data$code == code,]
# Get the current start and end of the sub period
Start_mean = mean_period[[j]][1]
End_mean = mean_period[[j]][2]
# Extract the data corresponding to this sub period
df_data_code_per =
df_data_code[df_data_code$Date >= Start_mean
& df_data_code$Date <= End_mean,]
# Min max for the sub period
Datemin = min(df_data_code_per$Date)
Datemax = max(df_data_code_per$Date)
# Creates a period name
Periods = paste(Datemin, Datemax,
sep=' / ')
# Mean of the flow over the sub period
dataMean = mean(df_data_code_per$Value,
na.rm=TRUE)
# If this in not the first period
if (j > 1) {
# Compute the difference of mean
Break = dataMean - dataMeantmp[i, k]
# Otherwise for the first period
} else {
# Stocks NA
Break = NA
}
# Normalises the break by the mean of the
# initial period
BreakMean = Break / dataMeantmp[i, k]
# Stores the result
BreakMean_code[j, i, k] = BreakMean
# Stores temporarily the mean of the current period
dataMeantmp[i, k] = dataMean
# Stores info needed to plot
Periods_mean = append(Periods_mean, Periods)
NPeriod_mean = append(NPeriod_mean, j)
Var_mean = append(Var_mean, var)
Code_mean = append(Code_mean, code)
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
DataMean_mean = append(DataMean_mean, dataMean)
BreakMean_mean = append(BreakMean_mean,
BreakMean)
}
}
}
# Computes the min and the max of the averaged trend for
# all the station
minBreakMean = apply(BreakMean_code, c(1, 2),
min, na.rm=TRUE)
maxBreakMean = apply(BreakMean_code, c(1, 2),
max, na.rm=TRUE)
# Blanks vector to store color info
Fill_mean = c()
Color_mean = c()
# Index to count over all break computed
ii = 1
for (j in 1:nPeriod_mean) {
# For all the code
for (k in 1:nCode) {
# Gets the code
code = Code[k]
# For all variable
for (i in 1:nbp) {
# Extracts averaged breaking
BreakMean = BreakMean_mean[ii]
# Gets the color associated
color_res = get_color(BreakMean,
minBreakMean[j, i],
maxBreakMean[j, i],
palette_name='perso',
reverse=TRUE)
# Gets the fill and contour color
fill = color_res
color = 'white'
# Stores it
Fill_mean = append(Fill_mean, fill)
Color_mean = append(Color_mean, color)
# Passes to the next index
ii = ii + 1
}
}
}
}
# If the slice option is not specified, the info for all
# stations will be draw on the same page
if (is.null(slice)) {
slice = nCode
}
# Extracts each possibilities of first letter of station code
firstLetter = levels(factor(substr(Code, 1, 1)))
# Number of different first letters
nfL = length(firstLetter)
# For all the available first letter
for (ifL in 1:nfL) {
# Gets the first letter
fL = firstLetter[ifL]
# Print the matrix name
print(paste('Matrix for region : ', fL,
" (", round(ifL/nfL*100, 1), " %)",
sep=''))
# Get only station code with the same first letter
subCodefL = Code[substr(Code, 1, 1) == fL]
# Counts the number of station in it
nsubCodefL = length(subCodefL)
# Computes the number of pages needed to plot all stations
nMat = as.integer(nsubCodefL/slice) + 1
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
# For all the pages
for (imat in 1:nMat) {
# Extracts the station for the current page
subCode = subCodefL[(slice*(imat-1)+1):(slice*imat)]
# Removes NA stations
subCode = subCode[!is.na(subCode)]
# Reverses verticale order of stations
subCode = rev(subCode)
# Gets the number of station for the page
nsubCode = length(subCode)
# Creates logical vector to select only info about
# stations that will be plot on the page
CodefL_trend = Code_trend %in% subCode
# Extracts those info
subPeriods_trend = Periods_trend[CodefL_trend]
subNPeriod_trend = NPeriod_trend[CodefL_trend]
subVar_trend = Var_trend[CodefL_trend]
subCode_trend = Code_trend[CodefL_trend]
subPthresold_trend = Pthresold_trend[CodefL_trend]
subTrendMean_trend = TrendMean_trend[CodefL_trend]
subDataMean_trend = DataMean_trend[CodefL_trend]
subFill_trend = Fill_trend[CodefL_trend]
subColor_trend = Color_trend[CodefL_trend]
# Same for breaking analysis
CodefL_mean = Code_mean %in% subCode
# Extracts right info
subPeriods_mean = Periods_mean[CodefL_mean]
subNPeriod_mean = NPeriod_mean[CodefL_mean]
subVar_mean = Var_mean[CodefL_mean]
subCode_mean = Code_mean[CodefL_mean]
subDataMean_mean = DataMean_mean[CodefL_mean]
subBreakMean_mean = BreakMean_mean[CodefL_mean]
subFill_mean = Fill_mean[CodefL_mean]
subColor_mean = Color_mean[CodefL_mean]
# Extracts the name of the currently hydrological
# region plotted
title = df_meta[df_meta$code == subCode[1],]$region_hydro
### Plot ###
# Fixes the height and width of the table according to
# the number of station and the number of column to draw
height = nsubCode
width = nbp * 2 * nPeriod_trend + nPeriod_trend + nPeriod_mean * nbp + nPeriod_mean + nbp
# Fixes the size of the plot area to keep proportion right
options(repr.plot.width=width, repr.plot.height=height)
# Open a new plot with a personalise theme
mat = ggplot() + theme_ash +
# Modification of theme in order to remove axis
theme(
panel.border=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
plot.margin=margin(t=5, r=5, b=5, l=5, unit="mm")
)
# Postion and name of the title
xt = 1 - 6
yt = height + 2
Title = bquote(bold(.(title)))
# Writes the title
mat = mat +
annotate("text", x=xt, y=yt,
label=Title,
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
hjust=0, vjust=1,
size=6, color="#00A3A8")
### Trend ###
# For all the trend period
for (j in 1:nPeriod_trend) {
# Extracts the info to plot associated to the
# right period
Periods_trend_per =
subPeriods_trend[subNPeriod_trend == j]
NPeriods_trend_per =
subNPeriod_trend[subNPeriod_trend == j]
Var_trend_per =
subVar_trend[subNPeriod_trend == j]
Code_trend_per =
subCode_trend[subNPeriod_trend == j]
Pthresold_trend_per =
subPthresold_trend[subNPeriod_trend == j]
TrendMean_trend_per =
subTrendMean_trend[subNPeriod_trend == j]
DataMean_trend_per =
subDataMean_trend[subNPeriod_trend == j]
Fill_trend_per =
subFill_trend[subNPeriod_trend == j]
Color_trend_per =
subColor_trend[subNPeriod_trend == j]
# Converts the vector of hydrological variable to
# a vector of integer associated to those variable
Xtmp = as.integer(factor(as.character(Var_trend_per)))
# Computes X position of the column for the period dates
Xc = j + (j - 1)*nbp*2
# Computes X positions of columns for the mean of
# variables
Xm = Xtmp + (j - 1)*nbp*2 + j
# Computes X positions of columns for the averaged trend
X = Xtmp + (j - 1)*nbp*2 + nbp + j
# Computes Y positions of each line for each station
Y = as.integer(factor(Code_trend_per))
# Reverses vertical order of stations
Y = rev(Y)
# Position of a line to delimite periods
x = Xc - 0.4
xend = X[length(X)] + 0.25
y = height + 1
yend = height + 1
# Drawing of the line
mat = mat +
annotate("segment",
x=x, xend=xend,
y=y, yend=yend,
color="grey40", size=0.35)
# Position of the name of the current period
yt = y + 0.15
Start = trend_period[[j]][1]
End = trend_period[[j]][2]
# Name of the period
periodName = bquote(bold('Période')~bold(.(as.character(j))))
# Naming the period
mat = mat +
annotate("text", x=x, y=yt,
label=periodName,
hjust=0, vjust=0.5,
size=3, color='grey40')
# For all the variable
for (i in 1:length(X)) {
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
mat = mat +
# Plots circles for averaged trends
gg_circle(r=0.45, xc=X[i], yc=Y[i],
fill=Fill_trend_per[i],
color=Color_trend_per[i]) +
# Plots circles for averaged of variables
gg_circle(r=0.45, xc=Xm[i], yc=Y[i],
fill='white', color='grey40') +
# Plots circles for the column of period dates
gg_circle(r=0.45, xc=Xc, yc=Y[i],
fill='white', color='grey40')
}
# For all averaged trends on this periods
for (i in 1:length(TrendMean_trend_per)) {
# Extracts the value of the averaged trend
trendMean = TrendMean_trend_per[i]
# Converts it to the right format with two
# significant figures
trendMeanC = signif(trendMean*100, 2)
# If it is significative
if (!is.na(Pthresold_trend_per[i])) {
# The text color is white
Tcolor = 'white'
# Otherwise
} else {
# The text is grey
Tcolor = 'grey85'
}
# Same for averaged variables over
# the current period
dataMean = DataMean_trend_per[i]
dataMeanC = signif(dataMean, 2)
mat = mat +
# Writes the mean trend
annotate('text', x=X[i], y=Y[i],
label=trendMeanC,
hjust=0.5, vjust=0.5,
size=3, color=Tcolor) +
# Writes the mean of the associated variable
annotate('text', x=Xm[i], y=Y[i],
label=dataMeanC,
hjust=0.5, vjust=0.5,
size=3, color='grey40')
}
# Writes a name for the period dates column
mat = mat +
annotate('text', x=Xc, y=max(Y) + 0.85,
label=bquote(bold('Début')),
hjust=0.5, vjust=0.5,
size=3, color='grey20') +
annotate('text', x=Xc, y=max(Y) + 0.6,
label=bquote(bold('Fin')),
hjust=0.5, vjust=0.5,
size=3, color='grey20')
# For all variable
for (i in 1:nbp) {
# Extract the variable of the plot
var = list_df2plot[[i]]$var
mat = mat +
# Writes the type of the variable
annotate('text', x=X[i], y=max(Y) + 0.82,
label=bquote(.(var)),
hjust=0.5, vjust=0.5,
size=3.25, color='grey20') +
# Writes the unit of the variable
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
annotate('text', x=X[i], y=max(Y) + 0.6,
label=bquote('[%.'*ans^{-1}*']'),
hjust=0.5, vjust=0.5,
size=2, color='grey40') +
# Writes the type of the averaged variable
annotate('text', x=Xm[i], y=max(Y) + 0.82,
label=bquote('µ'*.(var)),
hjust=0.5, vjust=0.5,
size=3.25, color='grey20') +
# Writes the unit of the averaged variable
annotate('text', x=Xm[i], y=max(Y) + 0.6,
label=bquote('['*m^3*'.'*s^{-1}*']'),
hjust=0.5, vjust=0.5,
size=2, color='grey40')
}
# For all the station on the page
for (k in 1:nsubCode) {
# Gets the code
code = subCode[k]
# Extracts label for the period dates
label = Periods_trend_per[Code_trend_per == code][1]
# Gets the start and end of the period
# for the station
periodStart = substr(label, 1, 4)
periodEnd = substr(label, 14, 17)
mat = mat +
# Writes the starting value
annotate('text', x=Xc, y=k + 0.13,
label=bquote(bold(.(periodStart))),
hjust=0.5, vjust=0.5,
size=3, color='grey40') +
# Writes the ending value
annotate('text', x=Xc, y=k - 0.13,
label=bquote(bold(.(periodEnd))),
hjust=0.5, vjust=0.5,
size=3, color='grey40')
}
}
### Mean ###
# For all the trend period
for (j in 1:nPeriod_mean) {
# Extracts the info to plot associated to the
# right period
Periods_mean_per =
subPeriods_mean[subNPeriod_mean == j]
NPeriods_mean_per =
subNPeriod_mean[subNPeriod_mean == j]
Var_mean_per =
subVar_mean[subNPeriod_mean == j]
Code_mean_per =
subCode_mean[subNPeriod_mean == j]
DataMean_mean_per =
subDataMean_mean[subNPeriod_mean == j]
BreakMean_mean_per =
subBreakMean_mean[subNPeriod_mean == j]
Fill_mean_per =
subFill_mean[subNPeriod_mean == j]
Color_mean_per =
subColor_mean[subNPeriod_mean == j]
# Converts the vector of hydrological variable to
# a vector of integer associated to those variable
Xtmp_mean = as.integer(factor(as.character(Var_mean_per)))
# Computes X position of the column for the period dates
Xc_mean = j + (j - 1)*nbp + X[length(X)]
# Computes X positions of columns for the mean of
# variables
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
Xm_mean = Xtmp_mean + (j - 1)*nbp + j + X[length(X)]
# Computes X positions of columns for the difference of
# mean between periods (break)
Xr_mean = Xtmp_mean + (j - 1)*nbp*2 + j + X[length(X)]
# Computes Y positions of each line for each station
Y_mean = as.integer(factor(Code_mean_per))
# Reverses vertical order of stations
Y_mean = rev(Y_mean)
# Position of a line to delimite periods
x = Xc_mean - 0.4
xend = Xm_mean[length(Xm_mean)] + 0.25
y = height + 1
yend = height + 1
# Drawing of the line
mat = mat +
annotate("segment",
x=x, xend=xend,
y=y, yend=yend,
color="grey40", size=0.35)
# Position of the name of the current period
yt = y + 0.15
Start = mean_period[[j]][1]
End = mean_period[[j]][2]
# Name of the period
periodName = bquote(bold('Période')~bold(.(as.character(j+nPeriod_trend))))
# Naming the period
mat = mat +
annotate("text", x=x, y=yt,
label=periodName,
hjust=0, vjust=0.5,
size=3, color='grey40')
# If this is not the first period
if (j > 1) {
# Position of a line to delimite results of
# difference of mean bewteen periods
x = Xr_mean[1] - 0.4
xend = Xr_mean[length(Xr_mean)] + 0.25
# Drawing of the line
mat = mat +
annotate("segment",
x=x, xend=xend,
y=y, yend=yend,
color="grey40", size=0.35)
# Naming the breaking columns
breakName = bquote(bold('Écart')~bold(.(as.character(j-1+nPeriod_trend)))*bold('-')*bold(.(as.character(j+nPeriod_trend))))
# Writes the name
mat = mat +
annotate("text", x=x, y=yt,
label=breakName,
hjust=0, vjust=0.5,
size=3, color='grey40')
}
# For all the variable
for (i in 1:length(Xm_mean)) {
mat = mat +
# Plots circles for averaged variables
gg_circle(r=0.45, xc=Xm_mean[i], yc=Y[i],
fill='white', color='grey40') +
# Plots circles for the column of period dates
gg_circle(r=0.45, xc=Xc_mean, yc=Y[i],
fill='white', color='grey40')
# If this is not the first period
if (j > 1) {
mat = mat +
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
# Plots circles for breaking results
gg_circle(r=0.45, xc=Xr_mean[i], yc=Y[i],
fill=Fill_mean_per[i],
color=Color_mean_per[i])
}
}
# For all averaged variables on this period
for (i in 1:length(DataMean_mean_per)) {
# Extracts values of averaged variables
dataMean = DataMean_mean_per[i]
# Converts it to the right format with two
# significant figures
dataMeanC = signif(dataMean, 2)
# Writes averaged variables values
mat = mat +
annotate('text', x=Xm_mean[i], y=Y[i],
label=dataMeanC,
hjust=0.5, vjust=0.5,
size=3, color='grey40')
# If this is not the first period
if (j > 1) {
# Extracts values of breaking between periods
BreakMean = BreakMean_mean_per[i]
# Converts it to the right format with two
# significant figures
BreakMeanC = signif(BreakMean*100, 2)
# Writes breaking values
mat = mat +
annotate('text', x=Xr_mean[i], y=Y[i],
label=BreakMeanC,
hjust=0.5, vjust=0.5,
size=3, color='white')
}
}
# Writes a name for the period dates column
mat = mat +
annotate('text', x=Xc_mean, y=max(Y) + 0.85,
label=bquote(bold('Début')),
hjust=0.5, vjust=0.5,
size=3, color='grey20') +
annotate('text', x=Xc_mean, y=max(Y) + 0.6,
label=bquote(bold('Fin')),
hjust=0.5, vjust=0.5,
size=3, color='grey20')
# For all variables
for (i in 1:nbp) {
# Extract the variable of the plot
var = list_df2plot[[i]]$var
mat = mat +
# Writes the type of the averaged variable
annotate('text', x=Xm_mean[i], y=max(Y) + 0.82,
label=bquote('µ'*.(var)),
hjust=0.5, vjust=0.5,
size=3.25, color='grey20') +
# Writes the unit of the averaged variable
annotate('text', x=Xm_mean[i], y=max(Y) + 0.6,
label=bquote('['*m^3*'.'*s^{-1}*']'),
hjust=0.5, vjust=0.5,
size=2, color='grey40')
# If this is not the first period
if (j > 1) {
mat = mat +
# Writes the type of the breaking variable
annotate('text', x=Xr_mean[i],
y=max(Y) + 0.82,
label=bquote('d'*.(var)),
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
hjust=0.5, vjust=0.5,
size=3.25, color='grey20') +
# Writes the unit of the breaking variable
annotate('text', x=Xr_mean[i],
y=max(Y) + 0.6,
label=bquote('[%]'),
hjust=0.5, vjust=0.5,
size=2, color='grey40')
}
}
# For all the station on the page
for (k in 1:nsubCode) {
# Gets the code
code = subCode[k]
# Extracts label for the period dates
label = Periods_mean_per[Code_mean_per == code][1]
# Gets the start and end of the period
# for the station
periodStart = substr(label, 1, 4)
periodEnd = substr(label, 14, 17)
mat = mat +
# # Writes the starting value
annotate('text', x=Xc_mean, y=k + 0.13,
label=bquote(bold(.(periodStart))),
hjust=0.5, vjust=0.5,
size=3, color='grey40') +
# Writes the ending value
annotate('text', x=Xc_mean, y=k - 0.13,
label=bquote(bold(.(periodEnd))),
hjust=0.5, vjust=0.5,
size=3, color='grey40')
}
}
### Code ###
# For all the station
for (k in 1:nsubCode) {
# Gets the code
code = subCode[k]
# Gets the name of the station
name = df_meta[df_meta$code == code,]$nom
# Fixes a limit for the max number
# of characters available
ncharMax = 38
# If the number of character of the name is greater
# than the limit
if (nchar(name) > ncharMax) {
# Cuts the name and add '...'
name = paste(substr(name, 1, ncharMax),
'...', sep='')
}
mat = mat +
# Writes the code of the station
annotate('text', x=0.3, y=k + 0.14,
label=bquote(bold(.(code))),
hjust=1, vjust=0.5,
size=3.5, color="#00A3A8") +
# Writes the name of the station
annotate('text', x=0.3, y=k - 0.14,
label=name,
hjust=1, vjust=0.5,
size=3.5, color="#00A3A8")
}
### Environment ###
mat = mat +
# Fixed coordinate system
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
coord_fixed() +
# X axis
scale_x_continuous(limits=c(1 - rel(6),
width + rel(0.5)),
expand=c(0, 0)) +
# Y axis
scale_y_continuous(limits=c(1 - rel(0.5),
height + rel(2)),
expand=c(0, 0))
# Paper format in A3 if needed
if (A3) {
width = 42
height = 29.7
dpi = 300
# Otherwise in A4
} else {
width = 29.7
height = 21
dpi = 100
}
# Saving
ggsave(plot=mat,
path=outdirTmp,
filename=paste(outnameTmp, '_', fL,
imat, '.pdf', sep=''),
width=width, height=height,
units='cm', dpi=dpi)
}
}
}