script.R 6.53 KiB
###### A MODIFIER ######
# Path to the data
computer_data_path = 
    "/home/louis/Documents/bouleau/INRAE/CDD_stationnarite/data"
    # "C:\\Users\\louis.heraut\\Documents\\CDD_stationnarite\\data"
# Work path
computer_work_path = 
    "/home/louis/Documents/bouleau/INRAE/CDD_stationnarite/ASH"
    # "C:\\Users\\louis.heraut\\Documents\\CDD_stationnarite\\ASH"
### BANQUE HYDRO ###
# Path to the directory where BH data is stored
filedir = 
    # ""
    "BanqueHydro_Export2021"
### MANUAL SELECTION ###
# Name of the file that will be analysed from the AG directory
filename =
    # ""
    # c(
      # "S2235610_HYDRO_QJM.txt", 
      # "P1712910_HYDRO_QJM.txt", 
      # "P0885010_HYDRO_QJM.txt",
      # "O5055010_HYDRO_QJM.txt",
      # "A2250310_HYDRO_QJM.txt"
      # )
    c("O3035210_HYDRO_QJM.txt",
      "O3011010_HYDRO_QJM.txt",
      "O1442910_HYDRO_QJM.txt")
### AGENCE ADOUR GARONNE SELECTION ###
# Path to the list file of AG data that will be analysed
AGlistdir = 
AGlistname = 
    # "Liste-station_RRSE.docx" 
### NIVALE SELECTION ###
# Path to the list file of metadata about station that will be analysed
NVlistdir =
NVlistname = 
    # "nival_selection.txt"
### TREND ANALYSIS ###
# Time period to analyse
period_all = c("1800-01-01", "2019-12-31")
period2 = c("1968-01-01", "2019-12-31")
########################
# FILE STRUCTURE #
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
# Set working directory setwd(computer_work_path) # Sourcing R file source('processing/extract.R', encoding='latin1') source('processing/format.R', encoding='latin1') source('processing/analyse.R', encoding='latin1') source('plotting/panel.R', encoding='latin1') source('plotting/layout.R', encoding='latin1') # Usefull library # Result directory resdir = file.path(computer_work_path, 'results') if (!(file.exists(resdir))) { dir.create(resdir) } print(paste('resdir :', resdir)) # Figure directory figdir = file.path(computer_work_path, 'figures') if (!(file.exists(figdir))) { dir.create(figdir) } print(paste('figdir :', figdir)) df_data_AG = NULL df_data_NV = NULL df_meta_AG = NULL df_meta_NV = NULL # AGENCE ADOUR GARONNE SELECTION # if (AGlistname != ""){ # Get only the selected station from a list station file df_selec_AG = get_selection_AG(computer_data_path, AGlistdir, AGlistname, cnames=c('code', 'station', 'BV_km2', 'axe_principal_concerne', 'longueur_serie', 'commentaires', 'choix'), c_num=c('BV_km2', 'longueur_serie')) filename = df_selec_AG[df_selec_AG$ok,]$filename # Extract metadata about selected stations df_meta_AG = extract_meta(computer_data_path, filedir, filename) # Extract data about selected stations df_data_AG = extract_data(computer_data_path, filedir, filename) } # NIVALE SELECTION # if (NVlistname != ""){ # Get only the selected station from a list station file df_selec_NV = get_selection_NV(computer_data_path, NVlistdir, NVlistname) filename = df_selec_NV[df_selec_NV$ok,]$filename
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
# Extract metadata about selected stations df_meta_NV = extract_meta(computer_data_path, filedir, filename) # Extract data about selected stations df_data_NV = extract_data(computer_data_path, filedir, filename) } # MANUAL SELECTION # if (AGlistname == "" & NVlistname == "") { # Extract metadata about selected stations df_meta_AG = extract_meta(computer_data_path, filedir, filename) # Extract data about selected stations df_data_AG = extract_data(computer_data_path, filedir, filename) } # JOIN # df_join = join(df_data_AG, df_data_NV, df_meta_AG, df_meta_NV) df_data = df_join$data df_meta = df_join$meta # ANALYSE # # Compute gap parameters for stations # df_lac = get_lacune(df_data, df_meta) # QA TREND # res_QAtrend = get_QAtrend(df_data, period=list(period_all, period2)) # QMNA TREND # # res_QMNAtrend = get_QMNAtrend(df_data, period=list(period_all, period2)) # VCN10 TREND # res_VCN10trend = get_VCN10trend(df_data, df_meta, period=list(period_all, period2)) # TIME PANEL # # Plot time panel of debit by stations # panels_layout(list(df_data, df_data), # layout_matrix=c(1, 2), # df_meta=df_meta, # missRect=list(TRUE, TRUE), # type=list('Q', 'sqrt(Q)'), # info_header=TRUE, # time_header=NULL, # var_ratio=3, # figdir=figdir, # filename_opt='time') # panels_layout(list(res_QAtrend$data, res_QMNAtrend$data, # res_VCN10trend$data), # layout_matrix=c(1, 2, 3), # df_meta=df_meta, # df_trend=list(res_QAtrend$trend, res_QMNAtrend$trend, # res_VCN10trend$trend), # type=list(bquote(Q[A]), bquote(Q[MNA]), bquote(V[CN10])), # missRect=list(TRUE, TRUE, TRUE), # period=period_all, # info_header=TRUE, # time_header=df_data, # time_ratio=2, # var_ratio=3, # figdir=figdir, # filename_opt='')
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
panels_layout(list(res_QAtrend$data, res_VCN10trend$data), layout_matrix=c(1, 2), df_meta=df_meta, df_trend=list(res_QAtrend$trend, res_VCN10trend$trend), type=list(bquote(Q[A]), bquote(V[CN10])), missRect=list(TRUE, TRUE), period=period_all, info_header=TRUE, time_header=df_data, time_ratio=2, var_ratio=5, figdir=figdir, filename_opt='') # panels_layout(list(res_QAtrend$data), # layout_matrix=c(1), # df_meta=df_meta, # df_trend=list(res_QAtrend$trend), # type=list(bquote(Q[A])), # missRect=list(TRUE), # period=period_all, # info_header=TRUE, # time_header=df_data, # time_ratio=2, # var_ratio=5, # figdir=figdir, # filename_opt='') ### /!\ Removed 185 row(s) containing missing values (geom_path) -> remove NA ###