An error occurred while loading the file. Please try again.
-
Heraut Louis authored79d06d78
# \\\
# Copyright 2021-2022 Louis Hraut*1
#
# *1 INRAE, France
# louis.heraut@inrae.fr
#
# This file is part of ash R toolbox.
#
# ash R toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
#
# ash R toolbox is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ash R toolbox. If not, see <https://www.gnu.org/licenses/>.
# ///
#
#
# plotting/break.R
#
# Plot tool useful to study date break.
## 1. BREAK PLOTTING
### 1.1. Histogram
histogram = function (data_bin, df_meta, figdir='', filedir_opt='') {
# Get all different stations code
Code = levels(factor(df_meta$code))
nCode = length(Code)
# If there is not a dedicated figure directory it creats one
outdir = file.path(figdir, filedir_opt, sep='')
if (!(file.exists(outdir))) {
dir.create(outdir)
}
# Fix the major and minor date break between tick for axis
datebreak = 10
dateminbreak = 1
# Computes histogram by year
res_hist = hist(data_bin, breaks='years', plot=FALSE)
# Gets the count by breaks
counts = res_hist$counts
# In pourcentage
counts_pct = counts/nCode * 100
# Gets the limits of the cells
breaks = as.Date(res_hist$breaks)
# Gets the middle of the cells
mids = as.Date(res_hist$mids)
# Open a new plot with personal theme
p = ggplot() + theme_ash +
# Y grid
theme(panel.grid.major.y=element_line(color='grey85', size=0.15),
# Remove y title
axis.title.y=element_blank()) +
# Plot bar
geom_bar(aes(x=mids, y=counts_pct),
stat='identity',
fill="#00A3A8") +
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
# X axis
scale_x_date(date_breaks=paste(as.character(datebreak),
'year', sep=' '),
date_minor_breaks=paste(as.character(dateminbreak),
'year', sep=' '),
guide='axis_minor',
date_labels="%Y",
limits=c(min(data_bin)-years(0),
max(data_bin)+years(0)),
expand=c(0, 0)) +
# Y axis
scale_y_continuous(limits=c(0,
max(counts_pct)*1.1),
expand=c(0, 0))
# Saving of plot
ggsave(plot=p,
path=outdir,
filename=paste('hist_break_date', '.pdf', sep=''),
width=10, height=10, units='cm', dpi=100)
}
### 1.2. Cumulative
cumulative = function (data_bin, df_meta, dyear=10, figdir='', filedir_opt='') {
# Get all different stations code
Code = levels(factor(df_meta$code))
nCode = length(Code)
# If there is not a dedicated figure directory it creats one
outdir = file.path(figdir, filedir_opt, sep='')
if (!(file.exists(outdir))) {
dir.create(outdir)
}
# Fix the major and minor date break between tick for axis
datebreak = 10
dateminbreak = 1
# Computes histogram by year
res_hist = hist(data_bin, breaks='years', plot=FALSE)
# Gets the count by breaks
counts = res_hist$counts
# Compute the cumulative sum
cumul = cumsum(counts)
# In percentage
cumul_pct = cumul/nCode * 100
# Gets the limits of the cells
breaks = as.Date(res_hist$breaks)
# Gets the middle of the cells
mids = as.Date(res_hist$mids)
# Duplicates start and end value to extend graph
mids = c(mids[1] - years(dyear), mids[1] - years(1),
mids,
mids[length(mids)] + years(dyear))
cumul_pct = c(0, 0,
cumul_pct,
cumul_pct[length(cumul_pct)])
# Centers the middle date
mids = mids + months(6)
# Shifts the breaking date to be coherent with the start
# of the rupture
breaks = breaks + 1
# Remove the last date because it is too much
breaks = breaks[-length(breaks)]
# Creates a blank datebreak list to plot cumulative graph
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
DB = c()
# For all the date break cells
for (i in 1:length(breaks)) {
# Duplicates the date break for the number of times
# it is counts in the histogram
DB = c(DB, rep(breaks[i], times=counts[i]))
}
# Estimates the median
q50 = as.Date(quantile(DB, probs=0.5)) + years(1)
# Print the median
print(paste('mediane :', q50))
# Open a new plot with personal theme
p = ggplot() + theme_ash +
# Y grid
theme(panel.grid.major.y=element_line(color='grey85', size=0.15),
# Remove y title
axis.title.y=element_blank()) +
# Plot line of cumulative sum
geom_line(aes(x=mids, y=cumul_pct),
color="#00A3A8") +
# Plot the median line
geom_line(aes(x=c(q50, q50), y=c(0, 100)),
color="wheat",
lty='dashed') +
# X axis
scale_x_date(date_breaks=paste(as.character(datebreak),
'year', sep=' '),
date_minor_breaks=paste(as.character(dateminbreak),
'year', sep=' '),
guide='axis_minor',
date_labels="%Y",
limits=c(min(mids)-years(0),
max(mids)+years(0)),
expand=c(0, 0)) +
# Y axis
scale_y_continuous(limits=c(-1, 101),
expand=c(0, 0))
# Saving plot
ggsave(plot=p,
path=outdir,
filename=paste('cumul_break_date', '.pdf', sep=''),
width=10, height=10, units='cm', dpi=100)
}