An error occurred while loading the file. Please try again.
-
Heraut Louis authored9dd131fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import datetime
import importlib
from ohmpi.config import HARDWARE_CONFIG # TODO: Remove references at config here -> move it in ohmpi_hardware as done for mux_2024
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
from adafruit_ads1x15.ads1x15 import Mode # noqa
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from digitalio import Direction # noqa
import minimalmodbus # noqa
from busio import I2C # noqa
import time
import numpy as np
import os
from ohmpi.hardware_components import TxAbstract, RxAbstract
from ohmpi.utils import enforce_specs
# ctl_name = HARDWARE_CONFIG['ctl'].pop('board_name', 'raspberry_pi')
# ctl_connection = HARDWARE_CONFIG['ctl'].pop('connection', 'i2c')
# ctl_module = importlib.import_module(f'ohmpi.hardware_components.{ctl_name}')
#
# TX_CONFIG = HARDWARE_CONFIG['tx']
# RX_CONFIG = HARDWARE_CONFIG['rx']
# hardware characteristics and limitations
# voltages are given in mV, currents in mA, sampling rates in Hz and data_rate in S/s
SPECS = {'rx': {'sampling_rate': {'min': 2., 'default': 10., 'max': 100.},
'data_rate': {'default': 860.},
'bias': {'min': -5000., 'default': 0., 'max': 5000.},
'coef_p2': {'default': 2.50},
'voltage_min': {'default': 10.0},
},
'tx': {'adc_voltage_min': {'default': 10.}, # Minimum voltage value used in vmin strategy
'adc_voltage_max': {'default': 4500.}, # Maximum voltage on ads1115 used to measure current
'voltage_max': {'min': 0., 'default': 12., 'max': 12.}, # Maximum input voltage
'data_rate': {'default': 860.},
'compatible_power_sources': {'default': 'pwr_batt', 'others' : ['dps5005']},
'r_shunt': {'min': 0., 'default': 2. },
'activation_delay': {'default': 0.005}, # Max turn on time of 211EH relays = 5ms
'release_delay': {'default': 0.001}, # Max turn off time of 211EH relays = 1ms
}}
# TODO: move low_battery spec in pwr
#
# # hardware characteristics and limitations
# # *** RX ***
# # ADC for voltage
# voltage_adc_voltage_min = 10. # mV
# voltage_adc_voltage_max = 4500. # mV
# sampling_rate = 20. # Hz
# data_rate = 860. # S/s?
# rx_mcp_board_address = 0x27
# RX_CONFIG['voltage_min'] = np.min([voltage_adc_voltage_min, RX_CONFIG.pop('voltage_min', np.inf)]) # mV
# RX_CONFIG['voltage_max'] = np.min([voltage_adc_voltage_max, RX_CONFIG.pop('voltage_max', np.inf)]) # mV
# RX_CONFIG['sampling_rate'] = RX_CONFIG.pop('sampling_rate', sampling_rate)
# RX_CONFIG['data_rate'] = RX_CONFIG.pop('data_rate', data_rate)
# # RX_CONFIG['coef_p2'] = RX_CONFIG.pop('coef_p2', 2.5)
# RX_CONFIG['latency'] = RX_CONFIG.pop('latency', 0.01)
# RX_CONFIG['bias'] = RX_CONFIG.pop('bias', 0.)
# RX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address)
#
#
# # *** TX ***
# # ADC for current
# current_adc_voltage_min = 10. # mV
# current_adc_voltage_max = 4500. # mV
# low_battery = 12. # V (conventional value as it is not measured on this board)
# tx_mcp_board_address = 0x21 #
# # pwr_voltage_max = 12. # V
# # pwr_default_voltage = 12. # V
# # pwr_switch_on_warmup = 0. # seconds
#
# TX_CONFIG['current_min'] = np.min([current_adc_voltage_min / (TX_CONFIG['r_shunt'] * 50),
# TX_CONFIG.pop('current_min', np.inf)]) # mA
# TX_CONFIG['current_max'] = np.min([current_adc_voltage_max / (TX_CONFIG['r_shunt'] * 50),
# TX_CONFIG.pop('current_max', np.inf)]) # mA
# # TX_CONFIG['voltage_max'] = np.min([pwr_voltage_max, TX_CONFIG.pop('voltage_max', np.inf)]) # V
# TX_CONFIG['voltage_max'] = TX_CONFIG.pop('voltage_max', np.inf) # V
# TX_CONFIG['voltage_min'] = -TX_CONFIG['voltage_max'] # V
# TX_CONFIG['default_voltage'] = np.min([TX_CONFIG.pop('default_voltage', np.inf), TX_CONFIG['voltage_max']]) # V
# # TX_CONFIG['pwr_switch_on_warm_up'] = TX_CONFIG.pop('pwr_switch_on_warmup', pwr_switch_on_warmup)
# TX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address)
# TX_CONFIG['low_battery'] = TX_CONFIG.pop('low_battery', low_battery)
# TX_CONFIG['latency'] = TX_CONFIG.pop('latency', 0.01)
# TX_CONFIG['bias'] = TX_CONFIG.pop('bias', 0.)
def _gain_auto(channel):
"""Automatically sets the gain on a channel
Parameters
----------
channel : ads.ADS1x15
Instance of ADS where voltage is measured.
Returns
-------
gain : float
Gain to be applied on ADS1115.
"""
gain = 2 / 3
if (abs(channel.voltage) < 2.048) and (abs(channel.voltage) >= 1.024):
gain = 2
elif (abs(channel.voltage) < 1.024) and (abs(channel.voltage) >= 0.512):
gain = 4
elif (abs(channel.voltage) < 0.512) and (abs(channel.voltage) >= 0.256):
gain = 8
elif abs(channel.voltage) < 0.256:
gain = 16
return gain
class Tx(TxAbstract):
def __init__(self, **kwargs):
for key in SPECS['tx'].keys():
kwargs = enforce_specs(kwargs, SPECS['tx'], key)
kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')})
super().__init__(**kwargs)
assert isinstance(self.connection, I2C)
kwargs.update({'pwr': kwargs.pop('pwr', SPECS['tx']['compatible_power_sources']['default'])})
if (kwargs['pwr'] != SPECS['tx']['compatible_power_sources']['default']
and kwargs['pwr'] not in SPECS['tx']['compatible_power_sources']['other']):
self.exec_logger.warning(f'Incompatible power source specified check config')
assert kwargs['pwr'] in SPECS['tx']
# self.pwr = None # TODO: set a list of compatible power system with the tx
self.exec_logger.event(f'{self.board_name}\ttx_init\tbegin\t{datetime.datetime.utcnow()}')
# self.voltage_max = kwargs['voltage_max'] # TODO: check if used
self._activation_delay = kwargs['activation_delay']
self._release_delay = kwargs['release_delay']
self.voltage_adjustable = False
self.current_adjustable = False
# I2C connexion to MCP23008, for current injection
self.mcp_board = MCP23008(self.connection, address=0x21)
# ADS1115 for current measurement (AB)
self._ads_current_address = 0x48
self._ads_current_data_rate = kwargs['data_rate']
self._ads_current = ads.ADS1115(self.connection, gain=self.adc_gain, data_rate=self._ads_current_data_rate,
address=self._ads_current_address)
self._ads_current.mode = Mode.CONTINUOUS
self.r_shunt = kwargs['r_shunt']
self.adc_voltage_min = kwargs['adc_voltage_min']
self.adc_voltage_max = kwargs['adc_voltage_max']
# Relays for pulse polarity
self.pin0 = self.mcp_board.get_pin(0)
self.pin0.direction = Direction.OUTPUT
self.pin1 = self.mcp_board.get_pin(1)
self.pin1.direction = Direction.OUTPUT
self.polarity = 0
self.gain = 2 / 3
# Initialize LEDs
self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
self.pin4.direction = Direction.OUTPUT
self.pin4.value = True
self._latency = kwargs.pop('latency', TX_CONFIG['latency'])
self._bias = kwargs.pop('bias', TX_CONFIG['bias'])
self.exec_logger.event(f'{self.board_name}\ttx_init\tend\t{datetime.datetime.utcnow()}')
@property
def gain(self):
return self._adc_gain
@gain.setter
def gain(self, value):
assert value in [2/3, 2, 4, 8, 16]
self._adc_gain = value
self._ads_current = ads.ADS1115(self.connection, gain=self.adc_gain,
data_rate=SPECS['tx']['data_rate']['default'],
address=self._ads_current_address)
self._ads_current.mode = Mode.CONTINUOUS
self.exec_logger.debug(f'Setting TX ADC gain to {value}')
def _adc_gain_auto(self):
self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}')
gain = _gain_auto(AnalogIn(self._ads_current, ads.P0))
self.exec_logger.debug(f'Setting TX ADC gain automatically to {gain}')
self.gain = gain
self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}')
def current_pulse(self, **kwargs):
TxAbstract.current_pulse(self, **kwargs)
self.exec_logger.warning(f'Current pulse is not implemented for the {self.board_name} board')
@property
def current(self):
""" Gets the current IAB in Amps
"""
iab = AnalogIn(self._ads_current, ads.P0).voltage * 1000. / (50 * self.r_shunt) # measure current
self.exec_logger.debug(f'Reading TX current: {iab} mA')
return iab
@ current.setter
def current(self, value):
assert self.adc_voltage_min / (50 * self.r_shunt) <= value <= self.adc_voltage_max / (50 * self.r_shunt)
self.exec_logger.warning(f'Current pulse is not implemented for the {self.board_name} board')
def gain_auto(self):
self._adc_gain_auto()
def inject(self, polarity=1, injection_duration=None):
self.polarity = polarity
TxAbstract.inject(self, polarity=polarity, injection_duration=injection_duration)
@property
def polarity(self):
return self._polarity
@polarity.setter
def polarity(self, polarity):
assert polarity in [-1, 0, 1]
self._polarity = polarity
if polarity == 1:
self.pin0.value = True
self.pin1.value = False
time.sleep(self._activation_delay) # Max turn on time of 211EH relays = 5ms
elif polarity == -1:
self.pin0.value = False
self.pin1.value = True
time.sleep(self._activation_delay) # Max turn on time of 211EH relays = 5ms
else:
self.pin0.value = False
self.pin1.value = False
time.sleep(self._release_delay) # Max turn off time of 211EH relays = 1ms
def turn_off(self):
self.pwr.turn_off(self)
def turn_on(self):
self.pwr.turn_on(self)
@property
def tx_bat(self):
self.soh_logger.warning(f'Cannot get battery voltage on {self.board_name}')
self.exec_logger.debug(f'{self.board_name} cannot read battery voltage. Returning default battery voltage.')
return self.pwr.voltage
def voltage_pulse(self, voltage=None, length=None, polarity=1):
""" Generates a square voltage pulse
Parameters
----------
voltage: float, optional
Voltage to apply in volts, tx_v_def is applied if omitted.
length: float, optional
Length of the pulse in seconds
polarity: 1,0,-1
Polarity of the pulse
"""
self.exec_logger.event(f'{self.board_name}\ttx_voltage_pulse\tbegin\t{datetime.datetime.utcnow()}')
# self.exec_logger.info(f'injection_duration: {length}') # TODO: delete me
if length is None:
length = self.injection_duration
if voltage is not None:
self.pwr.voltage = voltage
self.exec_logger.debug(f'Voltage pulse of {polarity*self.pwr.voltage:.3f} V for {length:.3f} s')
self.inject(polarity=polarity, injection_duration=length)
self.exec_logger.event(f'{self.board_name}\ttx_voltage_pulse\tend\t{datetime.datetime.utcnow()}')
class Rx(RxAbstract):
def __init__(self, **kwargs):
for key in SPECS['rx'].keys():
kwargs = enforce_specs(kwargs, SPECS['rx'], key)
kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')})
super().__init__(**kwargs)
assert isinstance(self.connection, I2C)
self.exec_logger.event(f'{self.board_name}\trx_init\tbegin\t{datetime.datetime.utcnow()}')
# I2C connexion to MCP23008, for DG411
self.mcp_board = MCP23008(self.connection, address=0x27)
# ADS1115 for voltage measurement (MN)
self._ads_voltage_address = 0x49
self._adc_gain = 2/3
self._ads_voltage = ads.ADS1115(self.connection, gain=self._adc_gain,
data_rate=SPECS['rx']['data_rate']['default'],
address=self._ads_voltage_address)
self._ads_voltage.mode = Mode.CONTINUOUS
self._coef_p2 = kwargs['coef_p2']
# self._voltage_max = kwargs['voltage_max']
self._sampling_rate = kwargs['sampling_rate']
self._bias = kwargs['bias']
self.exec_logger.event(f'{self.board_name}\trx_init\tend\t{datetime.datetime.utcnow()}')
self.pin_DG0 = self.mcp_board.get_pin(0)
self.pin_DG0.direction = Direction.OUTPUT
self.pin_DG1 = self.mcp_board.get_pin(1)
self.pin_DG1.direction = Direction.OUTPUT
self.pin_DG2 = self.mcp_board.get_pin(2)
self.pin_DG2.direction = Direction.OUTPUT
self.pin_DG0.value = True # open
self.pin_DG1.value = True # open gain 1 inactive
self.pin_DG2.value = False # close gain 0.5 active
self._voltage_gain = 0.5
@property
def gain(self):
return self._adc_gain
@gain.setter
def gain(self, value):
assert value in [2/3, 2, 4, 8, 16]
self._adc_gain = value
self._ads_voltage = ads.ADS1115(self.connection, gain=self.adc_gain,
data_rate=SPECS['rx']['data_rate']['default'],
address=self._ads_voltage_address)
self._ads_voltage.mode = Mode.CONTINUOUS
self.exec_logger.debug(f'Setting RX ADC gain to {value}')
def _adc_gain_auto(self):
self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}')
gain_0 = _gain_auto(AnalogIn(self._ads_voltage, ads.P0))
gain_2 = _gain_auto(AnalogIn(self._ads_voltage, ads.P2))
gain = np.min([gain_0, gain_2])
self.exec_logger.debug(f'Setting RX ADC gain automatically to {gain}')
self.gain = gain
self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}')
def gain_auto(self):
self._adc_gain_auto()
@property
def voltage(self):
""" Gets the voltage VMN in Volts
"""
self.exec_logger.event(f'{self.board_name}\trx_voltage\tbegin\t{datetime.datetime.utcnow()}')
u = -AnalogIn(self._ads_voltage, ads.P0, ads.P1).voltage * self._coef_p2 * 1000. - self._bias # TODO: check if it should be negated
self.exec_logger.event(f'{self.board_name}\trx_voltage\tend\t{datetime.datetime.utcnow()}')
return u
@property
def voltage_gain(self):
return self._voltage_gain
@voltage_gain.setter
def voltage_gain(self,value):
assert value in [0.5, 1]
self._voltage_gain = value
if self._voltage_gain == 1:
self.pin_DG1.value = False # closed gain 1 active
self.pin_DG2.value = True # open gain 0.5 inactive
elif self._voltage_gain == 0.5:
self.pin_DG1.value = True # closed gain 1 active
self.pin_DG2.value = False # open gain 0.5 inactive
def voltage_gain_auto(self):
u = ((AnalogIn(self.ads_voltage, ads.P0).voltage * 1000) - self.vmn_hardware_offset) / self.voltage_gain
if abs(vmn1) < 2500 and abs(vmn2) < 2500: ###TODO change voltage gain auto logic
self.voltage_gain = 1
else:
self.voltage_gain = 0.5