panel.R 21.48 KiB
# Usefull library
library(ggplot2)
library(scales)
library(qpdf)
library(gridExtra)
library(gridtext)
library(dplyr)
library(grid)
library(ggh4x)
library(RColorBrewer)
time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missRect=FALSE, unit2day=365.25, period=NULL, last=FALSE, first=FALSE, color=NULL) {
    if (type == 'sqrt(Q)') {
        df_data_code$Qm3s = sqrt(df_data_code$Qm3s)
    maxQ = max(df_data_code$Qm3s, na.rm=TRUE)
    power = get_power(maxQ) 
    maxQtmp = maxQ/10^power
    if (maxQtmp >= 5) {
        dbrk = 1.0
    } else if (maxQtmp < 5 & maxQtmp >= 3) {
        dbrk = 0.5
    } else if (maxQtmp < 3 & maxQtmp >= 2) {
        dbrk = 0.4
    } else if (maxQtmp < 2 & maxQtmp >= 1) {
        dbrk = 0.2
    } else if (maxQtmp < 1) {
        dbrk = 0.1
    dbrk = dbrk * 10^power
    accuracy = NULL
    dDate = as.numeric(df_data_code$Date[length(df_data_code$Date)] -
                       df_data_code$Date[1]) / unit2day
    if (dDate >= 100) {
        datebreak = 25
        dateminbreak = 5
    } else if (dDate < 100 & dDate >= 50) {
        datebreak = 10
        dateminbreak = 1
    } else if (dDate < 50) {
        datebreak = 5
        dateminbreak = 1
    p = ggplot() + 
        # theme_bw() +
    theme(panel.background=element_rect(fill='white'),
          text=element_text(family='sans'),
          # panel.border=element_blank(),
          panel.border = element_rect(color="grey85",
                                    fill=NA,
                                    size=0.7),
          # panel.grid.major.y=element_line(color='grey85', size=0.3),
          panel.grid.major.y=element_line(color='grey85', size=0.15),
          panel.grid.major.x=element_blank(),
          # axis.ticks.y=element_blank(),
          axis.ticks.y=element_line(color='grey75', size=0.3),
          axis.ticks.x=element_line(color='grey75', size=0.3),
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
axis.text.x=element_text(color='grey40'), axis.text.y=element_text(color='grey40'), ggh4x.axis.ticks.length.minor=rel(0.5), axis.ticks.length=unit(1.5, 'mm'), plot.title=element_text(size=9, vjust=-2, hjust=-1E-3, color='grey20'), axis.title.x=element_blank(), axis.title.y=element_blank(), # axis.title.y=element_text(size=8, color='grey20'), axis.line.x=element_blank(), axis.line.y=element_blank(), ) if (last) { if (first) { p = p + theme(plot.margin=margin(5, 5, 5, 5, unit="mm")) } else { p = p + theme(plot.margin=margin(0, 5, 5, 5, unit="mm")) } } else { if (first) { p = p + theme(plot.margin=margin(5, 5, 0, 5, unit="mm")) } else { p = p + theme(plot.margin=margin(0, 5, 0, 5, unit="mm")) } } if (type == 'sqrt(Q)' | type == 'Q') { p = p + geom_line(aes(x=df_data_code$Date, y=df_data_code$Qm3s), color='grey20', size=0.3) } else { p = p + geom_point(aes(x=df_data_code$Date, y=df_data_code$Qm3s), shape=1, color='grey20', size=1) } if (missRect) { NAdate = df_data_code$Date[is.na(df_data_code$Qm3s)] dNAdate = diff(NAdate) NAdate_Down = NAdate[append(Inf, dNAdate) != 1] NAdate_Up = NAdate[append(dNAdate, Inf) != 1] p = p + geom_rect(aes(xmin=NAdate_Down, ymin=0, xmax=NAdate_Up, ymax=maxQ*1.1), linetype=0, fill='Wheat', alpha=0.4) } if ((type == 'sqrt(Q)' | type == 'Q') & !is.null(period)) { period = as.list(period) Imin = 10^99 for (per in period) { I = interval(per[1], per[2]) if (I < Imin) { Imin = I period_min = as.Date(per)
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
} } p = p + geom_rect(aes(xmin=min(df_data_code$Date), ymin=0, xmax=period_min[1], ymax= maxQ*1.1), linetype=0, fill='grey85', alpha=0.3) + geom_rect(aes(xmin=period_min[2], ymin=0, xmax=max(df_data_code$Date), ymax= maxQ*1.1), linetype=0, fill='grey85', alpha=0.3) } if (!is.null(df_trend_code)) { # print(df_trend_code) Start = df_trend_code$period_start UStart = levels(factor(Start)) End = df_trend_code$period_end UEnd = levels(factor(End)) nPeriod = max(length(UStart), length(UEnd)) Periods = vector(mode='list', length=nPeriod) # for (i in 1:nPeriod) { # Periods[[i]] = as.Date(c(Period_start[i], Period_end[i])) # } ltype = c('solid', 'dashed', 'dotted', 'twodash') lty = c('solid', '22', 'dotted', 'twodash') ii = 0 for (i in 1:nPeriod) { df_trend_code_per = df_trend_code[df_trend_code$period_start == Start[i] & df_trend_code$period_end == End[i],] if (df_trend_code_per$p <= p_threshold) { ii = ii + 1 iStart = which.min(abs(df_data_code$Date - Start[i])) iEnd = which.min(abs(df_data_code$Date - End[i])) abs = c(df_data_code$Date[iStart], df_data_code$Date[iEnd]) abs_num = as.numeric(abs) / unit2day ord = abs_num * df_trend_code_per$trend + df_trend_code_per$intercept plot = tibble(abs=abs, ord=ord) if (!is.na(color[i])) { p = p + geom_line(data=plot, aes(x=abs, y=ord), color=color[i], linetype=ltype[i], size=0.7) } else { p = p + geom_line(aes(x=abs, y=ord),
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
color='cornflowerblue') } codeDate = df_data_code$Date codeQ = df_data_code$Qm3s x = gpct(2, codeDate, shift=TRUE) xend = x + gpct(3, codeDate) dy = gpct(6, codeQ, ref=0) y = gpct(100, codeQ, ref=0) - (ii-1)*dy xt = xend + gpct(1, codeDate) label = bquote(bold(.(format(df_trend_code$trend, scientific=TRUE, digits=3)))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']') p = p + annotate("segment", x=x, xend=xend, y=y, yend=y, color=color[i], lty=lty[i], lwd=1) + annotate("text", label=label, size=3, x=xt, y=y, hjust=0, vjust=0.4, color=color[i]) } } } p = p + ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*']')) + scale_x_date(date_breaks=paste(as.character(datebreak), 'year', sep=' '), date_minor_breaks=paste(as.character(dateminbreak), 'year', sep=' '), guide='axis_minor', date_labels="%Y", limits=c(min(df_data_code$Date), max(df_data_code$Date)), expand=c(0, 0)) p = p + scale_y_continuous(breaks=seq(0, maxQ*10, dbrk), limits=c(0, maxQ*1.1), expand=c(0, 0), labels=label_number(accuracy=accuracy)) return(p) } text_panel = function(code, df_meta) { df_meta_code = df_meta[df_meta$code == code,] text1 = paste( "<b>", code, '</b> - ', df_meta_code$nom, ' &#40;', df_meta_code$region_hydro, '&#41;', sep='') text2 = paste( "<b>", "Gestionnaire : ", df_meta_code$gestionnaire, "<br>", "</b>", sep='') text3 = paste( "<b>",
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
"Superficie : ", df_meta_code$surface_km2_IN, ' (', df_meta_code$surface_km2_BH, ')', " [km<sup>2</sup>] <br>", "X = ", df_meta_code$L93X_m_IN, ' (', df_meta_code$L93X_m_BH, ')', " [m ; Lambert 93]", "</b>", sep='') text4 = paste( "<b>", "Altitude : ", df_meta_code$altitude_m_IN, ' (', df_meta_code$altitude_m_BH, ')', " [m]<br>", "Y = ", df_meta_code$L93Y_m_IN, ' (', df_meta_code$L93Y_m_BH, ')', " [m ; Lambert 93]", "</b>", sep='') text5 = paste( "<b>", "INRAE (Banque Hydro)<br>", "INRAE (Banque Hydro)", "</b>", sep='') gtext1 = richtext_grob(text1, x=0, y=1, margin=unit(c(t=5, r=5, b=0, l=5), "mm"), hjust=0, vjust=1, gp=gpar(col="#00A3A8", fontsize=14)) gtext2 = richtext_grob(text2, x=0, y=0.55, margin=unit(c(t=0, r=5, b=0, l=5), "mm"), hjust=0, vjust=1, gp=gpar(col="grey20", fontsize=8)) gtext3 = richtext_grob(text3, x=0, y=1, margin=unit(c(t=0, r=5, b=5, l=5), "mm"), hjust=0, vjust=1, gp=gpar(col="grey20", fontsize=9)) gtext4 = richtext_grob(text4, x=0, y=1, margin=unit(c(t=0, r=5, b=5, l=5), "mm"), hjust=0, vjust=1, gp=gpar(col="grey20", fontsize=9)) gtext5 = richtext_grob(text5, x=0, y=1, margin=unit(c(t=0, r=5, b=5, l=5), "mm"), hjust=0, vjust=1, gp=gpar(col="grey20", fontsize=9)) gtext_merge = grid.arrange(grobs=list(gtext1, gtext2, gtext3, gtext4, gtext5), layout_matrix=matrix(c(1, 1, 1, 2, 2, 2, 3, 4, 5), nrow=3, byrow=TRUE)) return(gtext_merge) } matrice_panel = function (list_df2plot, df_meta) { nbp = length(list_df2plot) minTrend = c()
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
maxTrend = c() for (i in 1:nbp) { df_trend = list_df2plot[[i]]$trend p_threshold = list_df2plot[[i]]$p_threshold okTrend = df_trend$trend[df_trend$p <= p_threshold] minTrend[i] = min(okTrend, na.rm=TRUE) maxTrend[i] = max(okTrend, na.rm=TRUE) } # Get all different stations code Code = levels(factor(df_meta$code)) nCode = length(Code) nPeriod_max = 0 Start_code = vector(mode='list', length=nCode) End_code = vector(mode='list', length=nCode) Code_code = vector(mode='list', length=nCode) Periods_code = vector(mode='list', length=nCode) df_trend = list_df2plot[[1]]$trend for (j in 1:nCode) { code = Code[j] df_trend_code = df_trend[df_trend$code == code,] Start = df_trend_code$period_start UStart = levels(factor(Start)) End = df_trend_code$period_end UEnd = levels(factor(End)) nPeriod = max(length(UStart), length(UEnd)) Periods = c()#vector(mode='list', length=nPeriod) for (i in 1:nPeriod) { Periods = append(Periods, paste(Start[i], End[i], sep=' / ')) } Start_code[[j]] = Start End_code[[j]] = End Code_code[[j]] = code Periods_code[[j]] = Periods if (nPeriod > nPeriod_max) { nPeriod_max = nPeriod } } # print(Code_code) # print(Periods_code) Periods_mat = c() NPeriod_mat = c() Type_mat = list() Code_mat = c() Trend_mat = c() Fill_mat = c() Color_mat = c() for (j in 1:nPeriod_max) { for (code in Code) {
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
for (i in 1:nbp) { df_trend = list_df2plot[[i]]$trend p_threshold = list_df2plot[[i]]$p_threshold type = list_df2plot[[i]]$type # print(code) df_trend_code = df_trend[df_trend$code == code,] # print(df_trend_code) # print(Code_code == code ) # print(Start_code) Start = Start_code[Code_code == code][[1]][j] End = End_code[Code_code == code][[1]][j] Periods = Periods_code[Code_code == code][[1]][j] # print(Periods) df_trend_code_per = df_trend_code[df_trend_code$period_start == Start & df_trend_code$period_end == End,] if (df_trend_code_per$p <= p_threshold){ color_res = get_color(df_trend_code_per$trend, minTrend[i], maxTrend[i], palette_name='perso', reverse=FALSE) fill = color_res$color color = 'white' } else { fill = 'white' color = 'grey85' } # print(fill) trend = df_trend_code_per$trend Periods_mat = append(Periods_mat, Periods) NPeriod_mat = append(NPeriod_mat, j) Type_mat = append(Type_mat, type) Code_mat = append(Code_mat, code) Trend_mat = append(Trend_mat, trend) Fill_mat = append(Fill_mat, fill) Color_mat = append(Color_mat, color) } } } height = length(Code) width = nbp * 2 * nPeriod_max # print(height) # print(width) options(repr.plot.width=width, repr.plot.height=height) mat = ggplot() + theme( panel.background=element_rect(fill='white'), text=element_text(family='sans'), panel.border=element_blank(), panel.grid.major.y=element_blank(), panel.grid.major.x=element_blank(),
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
# axis.text.x=element_blank(), # axis.text.y=element_blank(), # axis.ticks.y=element_blank(), # axis.ticks.x=element_blank(), ggh4x.axis.ticks.length.minor=rel(0.5), axis.ticks.length=unit(1.5, 'mm'), plot.title=element_text(size=9, vjust=-3, hjust=-1E-3, color='grey20'), axis.title.x=element_blank(), axis.title.y=element_blank(), axis.line.x=element_blank(), axis.line.y=element_blank(), plot.margin=margin(5, 5, 5, 5, unit="mm"), ) X = c(0) for (j in 1:nPeriod_max) { print(j) Type_mat_per = Type_mat[NPeriod_mat == j] Code_mat_per = Code_mat[NPeriod_mat == j] Trend_mat_per = Trend_mat[NPeriod_mat == j] Fill_mat_per = Fill_mat[NPeriod_mat == j] Color_mat_per = Color_mat[NPeriod_mat == j] Xtmp = as.integer(factor(as.character(Type_mat_per))) X = Xtmp + X[length(X)] # print(X) Y = as.integer(factor(Code_mat_per)) # print(Y) for (i in 1:length(X)) { mat = mat + gg_circle(r=0.45, xc=X[i], yc=Y[i], fill=Fill_mat_per[i], color=Color_mat_per[i]) } for (i in 1:nbp) { type = list_df2plot[[i]]$type mat = mat + annotate('text', x=i, y=max(Y) + 0.6, label=bquote(.(type)), hjust=0.5, vjust=0, size=3.5, color='grey40') } for (i in 1:length(Trend_mat_per)) { trend = Trend_mat_per[i] if (!is.na(trend)) { power = get_power(trend) dbrk = 10^power trendN = round(trend / dbrk, 2) trendC1 = as.character(trendN) trendC2 = bquote('x '*10^{.(as.character(power))}) } else { trendC1 = '' trendC2 = '' } mat = mat +
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
annotate('text', x=X[i], y=Y[i], label=trendC1, hjust=0.5, vjust=0, size=3, color='white') + annotate('text', x=X[i], y=Y[i], label=trendC2, hjust=0.5, vjust=1.3, size=2, color='white') } } for (i in 1:length(Code)) { code = Code[i] name = df_meta[df_meta$code == code,]$name print(name) mat = mat + annotate('text', x=-1, y=i, label=code, hjust=0, vjust=0, size=3.5, color='grey40') + annotate('text', x=-1, y=i, label=name, hjust=0, vjust=1, size=3.5, color='grey40') } # print(Y) mat = mat + annotate("segment", x = width/2 + 0.5, xend = width/2 + 0.5, y = 1 - 0.5, yend = height + 0.5, color="grey85") mat = mat + coord_fixed() + scale_x_continuous(limits=c(1 - rel(2), width + rel(0.5)), expand=c(0, 0)) + scale_y_continuous(limits=c(1 - rel(0.5), height + rel(1)), expand=c(0, 0)) return (mat) } get_color = function (value, min, max, ncolor=256, palette_name='perso', reverse=FALSE) { if (palette_name == 'perso') { palette = colorRampPalette(c( '#1a4157', '#00af9d', '#fbdd7e', '#fdb147', '#fd4659' ))(ncolor) } else {
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
palette = colorRampPalette(brewer.pal(11, palette_name))(ncolor) } if (reverse) { palette = rev(palette) } palette_cold = palette[1:as.integer(ncolor/2)] palette_hot = palette[(as.integer(ncolor/2)+1):ncolor] ncolor_cold = length(palette_cold) ncolor_hot = length(palette_hot) if (value < 0) { idNorm = (value - min) / (0 - min) id = round(idNorm*(ncolor_cold - 1) + 1, 0) color = palette_cold[id] } else { idNorm = (value - 0) / (max - 0) id = round(idNorm*(ncolor_hot - 1) + 1, 0) color = palette_hot[id] } return(list(color=color, palette=palette)) } void = ggplot() + geom_blank(aes(1,1)) + theme( plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), axis.line = element_blank() ) palette_tester = function () { n = 300 X = 1:n Y = rep(0, times=n) palette = colorRampPalette(c( '#1a4157', '#00af9d', '#fbdd7e', '#fdb147', '#fd4659' ))(n) p = ggplot() + geom_line(aes(x=X, y=Y), color=palette[X], size=10) + scale_y_continuous(expand=c(0, 0)) ggsave(plot=p, path='/figures', filename=paste('palette_test', '.pdf', sep=''), width=10, height=10, units='cm', dpi=100) } # palette_teste()
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
get_power = function (value) { if (value > 1) { power = nchar(as.character(as.integer(value))) - 1 } else { dec = gsub('0.', '', as.character(value), fixed=TRUE) ndec = nchar(dec) nnum = nchar(as.character(as.numeric(dec))) power = -(ndec - nnum + 1) } return(power) } gg_circle = function(r, xc, yc, color="black", fill=NA, ...) { x = xc + r*cos(seq(0, pi, length.out=100)) ymax = yc + r*sin(seq(0, pi, length.out=100)) ymin = yc + r*sin(seq(0, -pi, length.out=100)) annotate("ribbon", x=x, ymin=ymin, ymax=ymax, color=color, fill=fill, ...) } gpct = function (pct, L, ref=NULL, shift=FALSE) { if (is.null(ref)) { minL = min(L, na.rm=TRUE) } else { minL = ref } maxL = max(L, na.rm=TRUE) spanL = maxL - minL xL = pct/100 * as.numeric(spanL) if (shift) { xL = xL + minL } return (xL) }