An error occurred while loading the file. Please try again.
-
Guillaume Perréal authoreda3da09fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import ogr
import os
import numpy as np
import math
import subprocess
import platform
import sys
import warnings
import csv
from sklearn.metrics import confusion_matrix, accuracy_score, cohen_kappa_score, precision_recall_fscore_support
from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from math import floor, log10
from mtdUtils import cloneVectorDataStructure, fieldToArray
from segmentationWorkflow import selectSamples
def pixelValidation(ref_shp,val_shp,ref_img,txt_out,cfield,pfield=None):
# Platform dependent parameters
if platform.system() == 'Linux':
sh = False
elif platform.system() == 'Windows':
sh = True
else:
sys.exit("Platform not supported!")
if pfield is None:
pfield = 'p' + cfield
tmp = os.path.splitext(val_shp)[0] + '.tif'
cmd = ['otbcli_Rasterization', '-in', val_shp, '-im', ref_img, '-out', tmp, 'uint16', '-mode', 'attribute', '-mode.attribute.field', pfield]
subprocess.call(cmd, shell=sh)
tmp_cm = os.path.splitext(val_shp)[0] + '.confmat.csv'
cmd = ['otbcli_ComputeConfusionMatrix', '-in', tmp, '-out', tmp_cm, '-ref', 'vector', '-ref.vector.in', ref_shp, '-ref.vector.field', cfield]
res = subprocess.check_output(cmd,shell=sh)
os.remove(tmp)
tid = open(txt_out, "w")
tid.write(res)
tid.close()
def surfaceValidation(ref_shp,val_shp,out,cfield,pfield=None):
if pfield is None:
pfield = 'p' + cfield
shpd = ogr.GetDriverByName('ESRI Shapefile')
ref_ds = ogr.Open(ref_shp, 0)
val_ds = ogr.Open(val_shp, 0)
ref_ly = ref_ds.GetLayer(0)
val_ly = val_ds.GetLayer(0)
out_ds = shpd.CreateDataSource(out)
out_ly = out_ds.CreateLayer(os.path.splitext(os.path.basename(out))[0],
srs=val_ly.GetSpatialRef(),
geom_type=val_ly.GetLayerDefn().GetGeomType())
feat = val_ly.GetFeature(0)
cidx = feat.GetFieldIndex(cfield)
pidx = feat.GetFieldIndex(pfield)
out_ly.CreateField(feat.GetFieldDefnRef(cidx))
out_ly.CreateField(feat.GetFieldDefnRef(pidx))
err_fld = ogr.FieldDefn("ERR", ogr.OFTInteger)
out_ly.CreateField(err_fld)
y_true = []
y_pred = []
y_wght = []
for rf in ref_ly:
rg = rf.GetGeometryRef()
val_ly.SetSpatialFilter(rg)
val_ly.ResetReading()
for vf in val_ly:
vg = vf.GetGeometryRef()
og = vg.Intersection(rg)
if og is not None and og.GetArea() > 0:
of = ogr.Feature(out_ly.GetLayerDefn())
of.SetGeometry(og)
c = vf.GetField(cidx)
p = vf.GetField(pidx)
e = int(c != p)
of.SetField(0, c)
of.SetField(1, p)
of.SetField(2, e)
out_ly.CreateFeature(of)
y_true.append(int(c))
y_pred.append(int(p))
y_wght.append(og.GetArea())
elif og is None:
print vg.GetArea()
ref_ds = None
val_ds = None
out_ds = None
cm = confusion_matrix(y_true,y_pred,sample_weight=y_wght)
acc = accuracy_score(y_true, y_pred, sample_weight=y_wght)
kappa = cohen_kappa_score(y_true, y_pred, sample_weight=y_wght)
prf = precision_recall_fscore_support(y_true, y_pred, sample_weight=y_wght)
classes = sorted(np.unique(y_true))
return classes,cm,acc,kappa,prf
def formatValidationTxt(classes,cm,acc,kappa,prf,txt_out):
# Format text output
tid = open(txt_out, "w")
tid.write('Confusion matrix (surfaces):\n\n')
ndigit = int(math.ceil(math.log10(np.max(cm))))
cm_fmt = '%' + str(ndigit + 3) + '.2f'
hd_fmt = '[ %' + str(ndigit - 1) + 'd ]'
tid.write(' ' * (ndigit + 3) + ' ' + ' '.join([hd_fmt % x for x in classes]) + '\n\n')
i = 0
for l in cm:
tid.write(hd_fmt % classes[i] + ' ' + ' '.join([cm_fmt % x for x in l]) + '\n')
i += 1
tid.write('\n')
pr_fmt = ' ' * (ndigit - 3) + '%6.4f'
tid.write('Per-class figures :\n\n')
tid.write(' ' * (ndigit + 3) + ' ' + ' '.join([hd_fmt % x for x in classes]) + '\n\n')
tid.write('PREC' + ' ' * (ndigit + 3 - 4) + ' ' + ' '.join([pr_fmt % x for x in prf[0]]) + '\n')
tid.write('RECALL' + ' ' * (ndigit + 3 - 6) + ' ' + ' '.join([pr_fmt % x for x in prf[1]]) + '\n')
tid.write('F-MEAS' + ' ' * (ndigit + 3 - 6) + ' ' + ' '.join([pr_fmt % x for x in prf[2]]) + '\n')
tid.write('\n')
tid.write('Overall Accuracy: %5.2f%%\n' % (acc * 100))
tid.write('Kappa : %6.4f\n' % (kappa))
tid.close()
def genKFolds(shp,fld,k,out_fld=None):
# Read all features and store classes in a separate array
ds = ogr.Open(shp)
allfeat = []
classes = []
ly = ds.GetLayer(0)
for f in ly:
allfeat.append(f)
classes.append(f.GetField(fld))
ly.ResetReading()
classes = np.array(classes)
Ncl = len(np.unique(classes))
# Generate indices for fold splitting
kf = StratifiedKFold(n_splits=k,shuffle=True)
train_index = []
test_index = []
i = 1
for tr,ts in kf.split(classes,classes):
chk = int(len(np.unique(classes[tr])) < Ncl) + 2*int(len(np.unique(classes[ts])) < Ncl)
if chk == 1:
warnings.warn('Fold ' + str(i) + ' misses some class in training set.')
elif chk == 2:
warnings.warn('Fold ' + str(i) + ' misses some class in test set.')
elif chk == 3:
warnings.warn('Fold ' + str(i) + ' misses some class in both training and test set.')
train_index.append(tr)
test_index.append(ts)
i += 1
# Generate and fill output files
dgt = int(floor(log10(k))+1)
train_out = []
test_out = []
if out_fld is None:
out_fld = os.path.dirname(shp) + '/' + str(k) + '_folds'
if not os.path.exists(out_fld):
os.mkdir(out_fld)
elif not os.path.exists(out_fld):
sys.exit('Output folder does not exists!')
drv = ogr.GetDriverByName('ESRI Shapefile')
for i in range(k):
fn_train = out_fld + '/' + os.path.basename(shp).replace('.shp','_train_fold_' + str(i+1).zfill(dgt) + '.shp')
if os.path.exists(fn_train):
drv.DeleteDataSource(fn_train)
fn_test = out_fld + '/' + os.path.basename(shp).replace('.shp','_test_fold_' + str(i+1).zfill(dgt) + '.shp')
if os.path.exists(fn_test):
drv.DeleteDataSource(fn_test)
train_out.append(fn_train)
test_out.append(fn_test)
ds_tr = cloneVectorDataStructure(ds,fn_train)
ds_ts = cloneVectorDataStructure(ds, fn_test)
ds_tr_ly = ds_tr.GetLayer(0)
ds_ts_ly = ds_ts.GetLayer(0)
for t in train_index[i]:
ds_tr_ly.CreateFeature(allfeat[t])
for t in test_index[i]:
ds_ts_ly.CreateFeature(allfeat[t])
ds_tr = None
ds_ts = None
ds = None
return train_out,test_out
def kFoldRefToSamples(train_samples, test_samples, train_folds, test_folds):
k = len(train_folds)
dgt = int(floor(log10(k)) + 1)
kfold_train_samples = []
kfold_test_samples = []
for i in range(k):
fnout = train_samples.replace('.shp','_train_fold_' + str(i+1).zfill(dgt) + '.shp')
selectSamples(train_samples,train_folds[i],fnout,merging_fields=False)
kfold_train_samples.append(fnout)
fnout = test_samples.replace('.shp', '_test_fold_' + str(i + 1).zfill(dgt) + '.shp')
selectSamples(test_samples, test_folds[i], fnout,merging_fields=False)
kfold_test_samples.append(fnout)
return kfold_train_samples,kfold_test_samples
def kFoldReport(fscores,accs,kappas,txt_out):
# Format text output
tid = open(txt_out, "w")
classes = fscores.keys()
ndigit = int(math.ceil(math.log10(np.max(classes))))
hd_fmt = '[ %' + str(15) + 'd ]'
mns = []
stds = []
# Convert into arrays
npy_accs = np.array(accs)
npy_kappas = np.array(kappas)
for c in fscores:
mns.append(np.mean(fscores[c]))
stds.append(np.std(fscores[c]))
acc_mn = np.mean(npy_accs)
acc_std = np.std(npy_accs)
kap_mn = np.mean(npy_kappas)
kap_std = np.std(npy_kappas)
tid.write('Summary of ' + str(len(accs)) + '-fold cross validation.\n\n')
tid.write('Per-class F-scores :\n\n')
tid.write('\n'.join(['Class %8d : %6.4f +/- %6.4f' % (c,x,y) for c,x,y in zip(classes,mns,stds)]))
tid.write('\n\n')
tid.write('Overall Accuracy: %5.2f%% +/- %5.2f%%\n' % (acc_mn * 100,acc_std * 100))
tid.write('Kappa : %6.4f +/- %6.4f\n' % (kap_mn,kap_std))
tid.close()
def readKFoldReport(fn,cln,tag = None):
fid = open(fn, 'rb')
cid = open(cln, 'rb')
# read report
classes = []
fsc_mean = []
fsc_std = []
oa_mean = None
oa_std = None
kc_mean = None
kc_std = None
clnames = {}
notfound = tag is not None
cidl = cid.read().splitlines()
for cl in cidl:
if tag is not None and notfound:
if cl != tag:
continue
if cl == tag and notfound:
notfound = False
continue
scl = cl.split(',')
if len(scl) == 2:
clnames[int(scl[0])] = scl[1]
else:
break
for l in fid:
line = l.split()
if len(line) == 0:
continue
if line[0] == 'Class':
classes.append(int(line[1]))
fsc_mean.append(float(line[3]))
fsc_std.append(float(line[5]))
elif line[0] == 'Overall':
oa_mean = float(line[2][:-1])
oa_std = float(line[4][:-1])
elif line[0] == 'Kappa':
kc_mean = float(line[2])
kc_std = float(line[4])
out = {}
out['PerClass'] = {}
out['OverallAcc'] = [oa_mean,oa_std]
out['Kappa'] = [kc_mean,kc_std]
out['ClassDict'] = clnames
for i in range(len(classes)):
out['PerClass'][clnames[classes[i]]] = [fsc_mean[i],fsc_std[i]]
fid.close()
cid.close()
return out
def kFoldReportToLatexTable(fn,cln,tag=None,ofn=None,mode='vertical'):
dct = readKFoldReport(fn,cln,tag)
if ofn == None:
ofn = fn.replace('.txt','.tex')
oid = open(ofn,'wb')
oid.write('\\documentclass{standalone}\n')
oid.write('\\usepackage[dvipsnames]{xcolor}\n')
oid.write('\\renewcommand\\familydefault{\\sfdefault}\n')
oid.write('\\begin{document}\n')
pcf = [dct['ClassDict'][i] for i in sorted(dct['ClassDict'])]
#def tabular
if mode == 'vertical':
oid.write('\\begin{tabular}{|c|c|}\n')
oid.write('\\hline\n')
oid.write('\\textbf{Class} & \\textbf{F-Score} \\\\\\hline\n')
for c in pcf:
clr = 'black'
if dct['PerClass'][c][0] < 0.3:
clr = 'red'
elif dct['PerClass'][c][0] >= 0.3 and dct['PerClass'][c][0] < 0.5:
clr = 'orange'
elif dct['PerClass'][c][0] > 0.75:
clr = 'ForestGreen'
oid.write('\\textit{%s} & \\color{%s}%1.4f$\\pm$%1.4f \\\\\\hline\n' % (c,clr,dct['PerClass'][c][0],dct['PerClass'][c][1]))
oid.write('\\hline\n')
clr = 'black'
if dct['OverallAcc'][0] < 0.3:
clr = 'red'
elif dct['OverallAcc'][0] >= 0.3 and dct['OverallAcc'][0] < 0.5:
clr = 'orange'
elif dct['OverallAcc'][0] > 0.75:
clr = 'ForestGreen'
oid.write('\\textbf{Overall Acc.} & {\\color{%s}\\textbf{%2.2f}\\%% $\\pm$ \\textbf{%2.2f}\\%%} \\\\\\hline\n' % (clr,dct['OverallAcc'][0],dct['OverallAcc'][1]))
oid.write('\\textbf{Kappa} & \\textbf{%0.4f} $\\pm$ \\textbf{%0.4f} \\\\\\hline\n' % (dct['Kappa'][0],dct['Kappa'][1]))
oid.write('\\end{tabular}')
oid.write('\\end{document}\n')
oid.close()
cdir = os.getcwd()
os.chdir(os.path.dirname(ofn))
subprocess.call(['pdflatex',ofn])
os.chdir(cdir)
return
def getTrainingDataFromShapefile(shp,fields,code):
ds = ogr.Open(shp)
ly = ds.GetLayer(0)
training_set = np.empty((ly.GetFeatureCount(),len(fields)))
training_labels = np.empty(ly.GetFeatureCount())
i=0
to_del = set()
for f in ly:
j=0
for fld in fields:
training_set[i,j] = f.GetField(fld)
if np.isnan(training_set[i,j]):
to_del.add(i)
j += 1
training_labels[i] = f.GetField(code)
i += 1
ds = None
# delete samples containing NaN
lst = np.array(list(to_del)).astype(np.int)
training_set = np.delete(training_set, lst, axis=0)
training_labels = np.delete(training_labels,lst)
return training_set,training_labels
def getVariableImportance(shp,fields,code,out_fn, nbtrees = 100, nodesize = 25, mtry = 0, nruns = 1, field_names=None):
if mtry <= 0 or mtry > len(fields):
mf = 'auto'
rf = RandomForestClassifier(n_estimators=nbtrees, min_samples_leaf=nodesize, max_features=mf, oob_score=True)
X,y = getTrainingDataFromShapefile(shp,fields,code)
importance = np.zeros(len(fields)).astype(float)
oob_score = 0.0
for i in range(nruns):
rf.fit(X,y)
importance += rf.feature_importances_
oob_score += rf.oob_score_
importance /= nruns
oob_score /= nruns
if field_names is not None and os.path.exists(field_names):
with open(field_names, mode='rb') as infile:
reader = csv.reader(infile)
names_dict = {rows[0]: rows[1] for rows in reader if rows[0] in fields}
else:
names_dict = {x:x for x in fields}
imp_dict = {fields[i]:importance[i] for i in range(len(fields))}
with open(out_fn, mode='wb') as outfile:
outfile.write('#OOB Accuracy: %6.4f%%\n' % (100 * oob_score))
writer = csv.writer(outfile)
for key,val in sorted(imp_dict.iteritems(), key=lambda (k,v):(v,k), reverse=True):
writer.writerow([key, names_dict[key],val])
return oob_score