test_probabilist.cpp 13.18 KiB
#include <fstream>
#include <vector>
#include <array>
#include <gtest/gtest.h>
#include <xtensor/xtensor.hpp>
#include <xtensor/xmanipulation.hpp>
#include <xtensor/xcsv.hpp>
#include "evalhyd/evalp.hpp"
using namespace xt::placeholders;  // required for `_` to work
TEST(ProbabilistTests, TestBrier)
    // read in data
    std::ifstream ifs;
    ifs.open("./data/q_obs.csv");
    xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<int>(ifs));
    ifs.close();
    ifs.open("./data/q_prd.csv");
    xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs);
    ifs.close();
    // compute scores
    xt::xtensor<double, 2> thresholds = {{690, 534, 445, NAN}};
    std::vector<xt::xarray<double>> metrics =
            evalhyd::evalp(
                    // shape: (sites [1], time [t])
                    xt::view(observed, xt::newaxis(), xt::all()),
                    // shape: (sites [1], lead times [1], members [m], time [t])
                    xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()),
                    {"BS", "BSS", "BS_CRD", "BS_LBD"},
                    thresholds
    // check results
    // Brier scores
    xt::xtensor<double, 4> bs =
            {{{{0.10615136, 0.07395622, 0.08669186, NAN}}}};
    EXPECT_TRUE(
            xt::sum(xt::isclose(metrics[0], bs, 1e-05, 1e-08, true))
            == xt::xscalar<double>(4)
    // Brier skill scores
    xt::xtensor<double, 4> bss =
            {{{{0.5705594, 0.6661165, 0.5635126, NAN}}}};
    EXPECT_TRUE(
            xt::sum(xt::isclose(metrics[1], bss, 1e-05, 1e-08, true))
            == xt::xscalar<double>(4)
    // Brier calibration-refinement decompositions
    xt::xtensor<double, 5> bs_crd =
            {{{{{0.011411758, 0.1524456, 0.2471852},
                {0.005532413, 0.1530793, 0.2215031},
                {0.010139431, 0.1220601, 0.1986125},
                {NAN, NAN, NAN}}}}};
    EXPECT_TRUE(
            xt::sum(xt::isclose(metrics[2], bs_crd, 1e-05, 1e-08, true))
            == xt::xscalar<double>(12)
    // Brier likelihood-base rate decompositions
    xt::xtensor<double, 5> bs_lbd =
            {{{{{0.012159881, 0.1506234, 0.2446149},
                {0.008031746, 0.1473869, 0.2133114},
                {0.017191279, 0.1048221, 0.1743227},
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
{NAN, NAN, NAN}}}}}; EXPECT_TRUE( xt::sum(xt::isclose(metrics[3], bs_lbd, 1e-05, 1e-08, true)) == xt::xscalar<double>(12) ); } TEST(ProbabilistTests, TestQuantiles) { // read in data std::ifstream ifs; ifs.open("./data/q_obs.csv"); xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<int>(ifs)); ifs.close(); ifs.open("./data/q_prd.csv"); xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs); ifs.close(); // compute scores std::vector<xt::xarray<double>> metrics = evalhyd::evalp( // shape: (sites [1], time [t]) xt::view(observed, xt::newaxis(), xt::all()), // shape: (sites [1], lead times [1], members [m], time [t]) xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()), {"QS", "CRPS"} ); // check results // Quantile scores xt::xtensor<double, 4> qs = {{{{ 345.91578 , 345.069256, 343.129359, 340.709869, 338.281598, 335.973535, 333.555157, 330.332426, 327.333539, 324.325996, 321.190082, 318.175117, 315.122186, 311.97205 , 308.644942, 305.612169, 302.169552, 298.445956, 294.974648, 291.273807, 287.724586, 284.101905, 280.235592, 276.21865 , 272.501484, 268.652733, 264.740168, 260.8558 , 256.90329 , 252.926292, 248.931239, 244.986396, 240.662998, 236.328964, 232.089785, 227.387089, 222.976008, 218.699975, 214.099678, 209.67252 , 205.189587, 200.395746, 195.2372 , 190.080139, 185.384244, 180.617858, 174.58323 , 169.154093, 163.110932, 156.274796, 147.575315}}}}; EXPECT_TRUE(xt::allclose(metrics[0], qs)); // Continuous ranked probability scores xt::xtensor<double, 3> crps = {{{252.956919}}}; EXPECT_TRUE(xt::allclose(metrics[1], crps)); } TEST(ProbabilistTests, TestMasks) { // read in data std::ifstream ifs; ifs.open("./data/q_obs.csv"); xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<int>(ifs)); ifs.close(); ifs.open("./data/q_prd.csv"); xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs); ifs.close(); // generate temporal subset by dropping 20 first time steps xt::xtensor<double, 4> masks = xt::ones<bool>({std::size_t {1}, std::size_t {1}, std::size_t {1}, std::size_t {observed.size()}}); xt::view(masks, 0, xt::all(), 0, xt::range(0, 20)) = 0; // compute scores using masks to subset whole record
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
xt::xtensor<double, 2> thresholds = {{690, 534, 445}}; std::vector<std::string> metrics = {"BS", "BSS", "BS_CRD", "BS_LBD", "QS", "CRPS"}; std::vector<xt::xarray<double>> metrics_masked = evalhyd::evalp( // shape: (sites [1], time [t]) xt::view(observed, xt::newaxis(), xt::all()), // shape: (sites [1], lead times [1], members [m], time [t]) xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()), metrics, thresholds, // shape: (sites [1], lead times [1], subsets [1], time [t]) masks ); // compute scores on pre-computed subset of whole record std::vector<xt::xarray<double>> metrics_subset = evalhyd::evalp( // shape: (sites [1], time [t-20]) xt::view(observed, xt::newaxis(), xt::range(20, _)), // shape: (sites [1], lead times [1], members [m], time [t-20]) xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::range(20, _)), metrics, thresholds ); // check results are identical for (int m = 0; m < metrics.size(); m++) { EXPECT_TRUE(xt::allclose(metrics_masked[m], metrics_subset[m])) << "Failure for (" << metrics[m] << ")"; } } TEST(ProbabilistTests, TestMaskingConditions) { xt::xtensor<double, 2> thresholds = {{690, 534, 445}}; std::vector<std::string> metrics = {"BS", "BSS", "BS_CRD", "BS_LBD", "QS", "CRPS"}; // read in data // read in data std::ifstream ifs; ifs.open("./data/q_obs.csv"); xt::xtensor<double, 2> observed = xt::load_csv<int>(ifs); ifs.close(); ifs.open("./data/q_prd.csv"); xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs); ifs.close(); // generate dummy empty masks required to access next optional argument xt::xtensor<bool, 4> masks; // conditions on streamflow values _________________________________________ // compute scores using masking conditions on streamflow to subset whole record xt::xtensor<std::array<char, 32>, 2> q_conditions = { {{"q_obs{<2000,>3000}"}} }; std::vector<xt::xarray<double>> metrics_q_conditioned = evalhyd::evalp( observed, xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()), metrics, thresholds, masks, q_conditions );
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
// compute scores using "NaN-ed" time indices where conditions on streamflow met std::vector<xt::xarray<double>> metrics_q_preconditioned = evalhyd::evalp( xt::where((observed < 2000) | (observed > 3000), observed, NAN), xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()), metrics, thresholds ); // check results are identical for (int m = 0; m < metrics.size(); m++) { EXPECT_TRUE( xt::allclose( metrics_q_conditioned[m], metrics_q_preconditioned[m] ) ) << "Failure for (" << metrics[m] << ")"; } // conditions on streamflow statistics _____________________________________ // compute scores using masking conditions on streamflow to subset whole record xt::xtensor<std::array<char, 32>, 2> q_conditions_ = { {{"q_prd_mean{>=median}"}} }; auto q_prd_mean = xt::mean(predicted, {0}, xt::keep_dims); double median = xt::median(q_prd_mean); std::vector<xt::xarray<double>> metrics_q_conditioned_ = evalhyd::evalp( observed, xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()), metrics, thresholds, masks, q_conditions_ ); // compute scores using "NaN-ed" time indices where conditions on streamflow met std::vector<xt::xarray<double>> metrics_q_preconditioned_ = evalhyd::evalp( xt::where(q_prd_mean >= median, observed, NAN), xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()), metrics, thresholds ); // check results are identical for (int m = 0; m < metrics.size(); m++) { EXPECT_TRUE( xt::allclose( metrics_q_conditioned_[m], metrics_q_preconditioned_[m] ) ) << "Failure for (" << metrics[m] << ")"; } // conditions on temporal indices __________________________________________ // compute scores using masking conditions on time indices to subset whole record xt::xtensor<std::array<char, 32>, 2> t_conditions = { {{"t{0,1,2,3,4,5:97,97,98,99}"}} }; std::vector<xt::xarray<double>> metrics_t_conditioned = evalhyd::evalp( observed, xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()), metrics, thresholds, masks, t_conditions ); // compute scores on already subset time series
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
std::vector<xt::xarray<double>> metrics_t_subset = evalhyd::evalp( xt::view(observed, xt::all(), xt::range(0, 100)), xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::range(0, 100)), metrics, thresholds ); // check results are identical for (int m = 0; m < metrics.size(); m++) { EXPECT_TRUE( xt::allclose( metrics_t_conditioned[m], metrics_t_subset[m] ) ) << "Failure for (" << metrics[m] << ")"; } } TEST(ProbabilistTests, TestMissingData) { xt::xtensor<double, 2> thresholds {{ 4., 5. }}; std::vector<std::string> metrics = {"BS", "BSS", "BS_CRD", "BS_LBD", "QS", "CRPS"}; // compute metrics on series with NaN xt::xtensor<double, 4> forecast_nan {{ // leadtime 1 {{ 5.3, 4.2, 5.7, 2.3, NAN }, { 4.3, 4.2, 4.7, 4.3, NAN }, { 5.3, 5.2, 5.7, 2.3, NAN }}, // leadtime 2 {{ NAN, 4.2, 5.7, 2.3, 3.1 }, { NAN, 4.2, 4.7, 4.3, 3.3 }, { NAN, 5.2, 5.7, 2.3, 3.9 }} }}; xt::xtensor<double, 2> observed_nan {{ 4.7, 4.3, NAN, 2.7, 4.1 }}; std::vector<xt::xarray<double>> metrics_nan = eh::evalp( observed_nan, forecast_nan, metrics, thresholds ); // compute metrics on manually subset series (one leadtime at a time) xt::xtensor<double, 4> forecast_pp1 {{ // leadtime 1 {{ 5.3, 4.2, 2.3 }, { 4.3, 4.2, 4.3 }, { 5.3, 5.2, 2.3 }}, }}; xt::xtensor<double, 2> observed_pp1 {{ 4.7, 4.3, 2.7 }}; std::vector<xt::xarray<double>> metrics_pp1 = eh::evalp( observed_pp1, forecast_pp1, metrics, thresholds ); xt::xtensor<double, 4> forecast_pp2 {{ // leadtime 2 {{ 4.2, 2.3, 3.1 },
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384
{ 4.2, 4.3, 3.3 }, { 5.2, 2.3, 3.9 }} }}; xt::xtensor<double, 2> observed_pp2 {{ 4.3, 2.7, 4.1 }}; std::vector<xt::xarray<double>> metrics_pp2 = eh::evalp( observed_pp2, forecast_pp2, metrics, thresholds ); // check that numerical results are identical for (int m = 0; m < metrics.size(); m++) { // for leadtime 1 EXPECT_TRUE( xt::allclose( xt::view(metrics_nan[m], xt::all(), 0), xt::view(metrics_pp1[m], xt::all(), 0) ) ) << "Failure for (" << metrics[m] << ", " << "leadtime 1)"; // for leadtime 2 EXPECT_TRUE( xt::allclose( xt::view(metrics_nan[m], xt::all(), 1), xt::view(metrics_pp2[m], xt::all(), 0) ) ) << "Failure for (" << metrics[m] << ", " << "leadtime 2)"; } }