An error occurred while loading the file. Please try again.
-
Guillaume Perréal authored53f39366
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -*- coding: utf-8 -*-
#==========================================================================
#
# Copyright Remi Cresson (IRSTEA)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0.txt
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#==========================================================================*/
import sys
import os
import numpy as np
import math
import time
import otbApplication
import tensorflow as tf
import shutil
def flatten_nparray(np_arr):
""" Returns a 1D numpy array retulting from the flatten of the input
"""
return np_arr.reshape((len(np_arr)))
def print_histo(np_arr, title=""):
""" Prints the histogram of the input numpy array
"""
np_flat = flatten_nparray(np_arr)
np_hist = np.bincount(np_flat)
np_vals = np.unique(np_flat)
if (len(title) > 0):
print(title + ":")
print("Values : "+str(np_vals))
print("Count : "+str(np_hist))
def print_tensor_live(name, tensor):
""" Print the shape of a tensor during a session run
"""
return tf.Print(tensor, [tf.shape(tensor)], name + " shape")
def print_tensor_info(name, tensor):
""" Print the shape of a tensor
Args:
name : the tensor's name (as we want it to be displayed)
tensor : the tensor
"""
print(name+" : "+str(tensor.shape)+" (dtype="+str(tensor.dtype)+")")
def read_samples(fn, single=False):
""" Read an image of patches and return a 4D numpy array
TODO: Add an optional argument for the y-patchsize
Args:
fn: file name
single: a boolean telling if there is only 1 image in the batch.
In this case, the image can be rectangular (not squared)
"""
# Get input image size
imageInfo = otbApplication.Registry.CreateApplication('ReadImageInfo')
imageInfo.SetParameterString('in', fn)
imageInfo.Execute()
size_x = imageInfo.GetParameterInt('sizex')
size_y = imageInfo.GetParameterInt('sizey')
nbands = imageInfo.GetParameterInt('numberbands')
print("Loading image "+str(fn)+" ("+str(size_x)+" x "+str(size_y)+" x "+str(nbands)+")")
# Prepare the PixelValue application
imageReader = otbApplication.Registry.CreateApplication('ExtractROI')
imageReader.SetParameterString('in', fn)
imageReader.SetParameterInt('sizex', size_x)
imageReader.SetParameterInt('sizey', size_y)
imageReader.Execute()
outimg=imageReader.GetVectorImageAsNumpyArray('out', 'float')
# quick stats
print("Quick stats: min="+str(np.amin(outimg))+", max="+str(np.amax(outimg)) )
# reshape
if (single):
return np.copy(outimg.reshape((1, size_y, size_x, nbands)))
n_samples = int(size_y / size_x)
outimg = outimg.reshape((n_samples, size_x, size_x, nbands))
print("Returned numpy array shape: "+str(outimg.shape))
return np.copy(outimg)
def getBatch(X, Y, i, batch_size):
start_id = i*batch_size
end_id = min( (i+1) * batch_size, X.shape[0])
batch_x = X[start_id:end_id]
batch_y = Y[start_id:end_id]
return batch_x, batch_y
def CreateSavedModel(sess, inputs, outputs, directory):
"""
Create a SavedModel
Args:
sess: the session
inputs: the list of input names
outputs: the list of output names
directory: the output path for the SavedModel
"""
print("Create a SavedModel in " + directory)
# Get graph
graph = tf.get_default_graph()
# Get inputs
input_dict = { i : graph.get_tensor_by_name(i) for i in inputs }
output_dict = { o : graph.get_tensor_by_name(o) for o in outputs }
# Build the SavedModel
builder = tf.saved_model.builder.SavedModelBuilder(directory)
signature_def_map= {
"model": tf.saved_model.signature_def_utils.predict_signature_def(
input_dict,
output_dict)
}
builder.add_meta_graph_and_variables(sess,[tf.saved_model.tag_constants.TRAINING],signature_def_map)
builder.add_meta_graph([tf.saved_model.tag_constants.SERVING])
builder.save()
def CheckpointToSavedModel(ckpt_path, inputs, outputs, savedmodel_path, clear_devices=False):
"""
Read a Checkpoint and build a SavedModel
Args:
ckpt_path: path to the checkpoint file (without the ".meta" extension)
inputs: input list of placeholders names (e.g. ["x_cnn_1:0", "x_cnn_2:0"])
outputs: output list of tensor outputs names (e.g. ["prediction:0", "features:0"])
savedmodel_path: path to the SavedModel
"""
tf.reset_default_graph()
with tf.Session() as sess:
# Restore variables from disk.
model_saver = tf.train.import_meta_graph(ckpt_path+".meta", clear_devices=clear_devices)
model_saver.restore(sess, ckpt_path)
# Create a SavedModel
#CreateSavedModel(sess, inputs, outputs, savedmodel_path)
graph = tf.get_default_graph()
tf.saved_model.simple_save(sess,
savedmodel_path,
inputs={ i : graph.get_tensor_by_name(i) for i in inputs },
outputs={ o : graph.get_tensor_by_name(o) for o in outputs })