CreateInputsModel.GRiwrm.Rd 6.77 KiB
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/CreateInputsModel.GRiwrm.R
\name{CreateInputsModel.GRiwrm}
\alias{CreateInputsModel.GRiwrm}
\title{Creation of an InputsModel object for a \strong{airGRiwrm} network}
\usage{
\method{CreateInputsModel}{GRiwrm}(
  x,
  DatesR,
  Precip = NULL,
  PotEvap = NULL,
  Qobs = NULL,
  PrecipScale = TRUE,
  TempMean = NULL,
  TempMin = NULL,
  TempMax = NULL,
  ZInputs = NULL,
  HypsoData = NULL,
  NLayers = 5,
  ...
)
}
\arguments{
\item{x}{[GRiwrm object] diagram of the semi-distributed model (See \link{CreateGRiwrm})}

\item{DatesR}{\link{POSIXt} vector of dates}

\item{Precip}{(optional) \link{matrix} or \link{data.frame} frame of numeric containing precipitation in [mm per time step]. Column names correspond to node IDs}

\item{PotEvap}{(optional) \link{matrix} or \link{data.frame} frame of numeric containing potential evaporation [mm per time step]. Column names correspond to node IDs}

\item{Qobs}{(optional) \link{matrix} or \link{data.frame} frame of numeric containing observed flows in [mm per time step]. Column names correspond to node IDs}

\item{PrecipScale}{(optional) named \link{vector} of \link{logical} indicating if the mean of the precipitation interpolated on the elevation layers must be kept or not, required to create CemaNeige module inputs, default \code{TRUE} (the mean of the precipitation is kept to the original value)}

\item{TempMean}{(optional) \link{matrix} or \link{data.frame} of time series of mean air temperature [°C], required to create the CemaNeige module inputs}

\item{TempMin}{(optional) \link{matrix} or \link{data.frame} of time series of minimum air temperature [°C], possibly used to create the CemaNeige module inputs}

\item{TempMax}{(optional) \link{matrix} or \link{data.frame} of time series of maximum air temperature [°C], possibly used to create the CemaNeige module inputs}

\item{ZInputs}{(optional) named \link{vector} of \link{numeric} giving the mean elevation of the Precip and Temp series (before extrapolation) [m], possibly used to create the CemaNeige module input}

\item{HypsoData}{(optional) \link{matrix} or \link{data.frame} containing 101 \link{numeric} rows: min, q01 to q99 and max of catchment elevation distribution [m], if not defined a single elevation is used for CemaNeige}

\item{NLayers}{(optional) named \link{vector} of \link{numeric} integer giving the number of elevation layers requested \link{-}, required to create CemaNeige module inputs, default=5}

\item{...}{used for compatibility with S3 methods}
}
\value{
A \emph{GRiwrmInputsModel} object which is a list of \emph{InputsModel} objects created by \link[airGR:CreateInputsModel]{airGR::CreateInputsModel} with one item per modelled sub-catchment.
}
\description{
Creation of an InputsModel object for a \strong{airGRiwrm} network
}
\details{
Meteorological data are needed for the nodes of the network that represent a catchment simulated by a rainfall-runoff model. Instead of \link[airGR:CreateInputsModel]{airGR::CreateInputsModel} that has \link{numeric} \link{vector} as time series inputs, this function uses \link{matrix} or \link{data.frame} with the id of the sub-catchment as column names. For single values (\code{ZInputs} or \code{NLayers}), the function requires named \link{vector} with the id of the sub-catchment as name item. If an argument is optional, only the column or the named item has to be provided.

See \link[airGR:CreateInputsModel]{airGR::CreateInputsModel} documentation for details concerning each input.
}
\examples{
###################################################################
# Run the `airGR::RunModel_Lag` example in the GRiwrm fashion way #
# Simulation of a reservoir with a purpose of low-flow mitigation #
###################################################################

## ---- preparation of the InputsModel object

## loading package and catchment data
library(airGRiwrm)
data(L0123001)

## ---- specifications of the reservoir

## the reservoir withdraws 1 m3/s when it's possible considering the flow observed in the basin
Qupstream <- matrix(-sapply(BasinObs$Qls / 1000 - 1, function(x) {
  min(1, max(0, x, na.rm = TRUE))
}), ncol = 1)

## except between July and September when the reservoir releases 3 m3/s for low-flow mitigation
month <- as.numeric(format(BasinObs$DatesR, "\%m"))
Qupstream[month >= 7 & month <= 9] <- 3
Qupstream <- Qupstream * 86400 ## Conversion in m3/day

## the reservoir is not an upstream subcachment: its areas is NA
BasinAreas <- c(NA, BasinInfo$BasinArea)

## delay time between the reservoir and the catchment outlet is 2 days and the distance is 150 km
LengthHydro <- 150
## with a delay of 2 days for 150 km, the flow velocity is 75 km per day
Velocity <- (LengthHydro * 1e3 / 2) / (24 * 60 * 60) ## Conversion km/day -> m/s

# This example is a network of 2 nodes which can be describe like this:
db <- data.frame(id = c("Reservoir", "GaugingDown"),
                 length = c(LengthHydro, NA),
                 down = c("GaugingDown", NA),
                 area = c(NA, BasinInfo$BasinArea),
                 model = c(NA, "RunModel_GR4J"),
                 stringsAsFactors = FALSE)

# Create GRiwrm object from the data.frame
griwrm <- CreateGRiwrm(db)
str(griwrm)

# Formatting observations for the hydrological models
# Each input data should be a matrix or a data.frame with the good id in the name of the column
Precip <- matrix(BasinObs$P, ncol = 1)
colnames(Precip) <- "GaugingDown"
PotEvap <- matrix(BasinObs$E, ncol = 1)
colnames(PotEvap) <- "GaugingDown"

# Observed flows contain flows that are directly injected in the model
Qobs = matrix(Qupstream, ncol = 1)
colnames(Qobs) <- "Reservoir"

# Creation of the GRiwrmInputsModel object (= a named list of InputsModel objects)
InputsModels <- CreateInputsModel(griwrm,
                            DatesR = BasinObs$DatesR,
                            Precip = Precip,
                            PotEvap = PotEvap,
                            Qobs = Qobs)
str(InputsModels)

## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1990-01-01"),
               which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1999-12-31"))

# Creation of the GriwmRunOptions object
RunOptions <- CreateRunOptions(InputsModels,
                                IndPeriod_Run = Ind_Run)
str(RunOptions)

# Parameters of the SD models should be encapsulated in a named list
ParamGR4J <- c(X1 = 257.238, X2 = 1.012, X3 = 88.235, X4 = 2.208)
Param <- list(`GaugingDown` = c(Velocity, ParamGR4J))

# RunModel for the whole network
OutputsModels <- RunModel(InputsModels,
                          RunOptions = RunOptions,
                          Param = Param)
str(OutputsModels)

# Compare Simulation with reservoir and observation of natural flow
plot(OutputsModels, data.frame(GaugingDown = BasinObs$Qmm[Ind_Run]))
}