RunModel_LRQ.R 7.52 KiB
RunModel_LRQ <- function(InputsModel, RunOptions, Param, QcontribDown) {
  NParam <- 2
  #RunModel_LRQ
  ## argument check
  if (!inherits(InputsModel, "InputsModel")) {
    stop("'InputsModel' must be of class 'InputsModel'")
  if (!inherits(InputsModel, "SD")) {
    stop("'InputsModel' must be of class 'SD'")
  if (!inherits(RunOptions, "RunOptions")) {
    stop("'RunOptions' must be of class 'RunOptions'")
  if (!is.vector(Param) | !is.numeric(Param)) {
    stop("'Param' must be a numeric vector")
  if (sum(!is.na(Param)) != NParam) {
    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
  if (inherits(QcontribDown, "OutputsModel")) {
    if (is.null(QcontribDown$Qsim)) {
      stop("'QcontribDown' should contain a key 'Qsim' containing the output of the runoff of the downstream subcatchment")
    if (length(QcontribDown$Qsim) != length(RunOptions$IndPeriod_Run)) {
      stop("Time series Qsim in 'QcontribDown' should have the same length as 'RunOptions$IndPeriod_Run'")
    if (!identical(RunOptions$IndPeriod_WarmUp, 0L) && !identical(RunOptions$Outputs_Sim, RunOptions$Outputs_Cal)) {
      # This test is not necessary during calibration but usefull in other cases because
      # WarmUpQsim is then used for downstream sub-basins because of the delay in Qupstream
      if (is.null(QcontribDown$RunOptions$WarmUpQsim) ||
          length(QcontribDown$RunOptions$WarmUpQsim) != length(RunOptions$IndPeriod_WarmUp)) {
        stop("Time series WarmUpQsim in 'QcontribDown' should have the same length as 'RunOptions$IndPeriod_WarmUp'")
  } else if (is.vector(QcontribDown) && is.numeric(QcontribDown)) {
    if (length(QcontribDown) != length(RunOptions$IndPeriod_Run)) {
      stop("'QcontribDown' should have the same length as 'RunOptions$IndPeriod_Run'")
  } else {
    stop("'QcontribDown' must be a numeric vector or a 'OutputsModel' object")
  # data set up
  NbUpBasins <- length(InputsModel$LengthHydro)
  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
    RunOptions$IndPeriod_WarmUp <- NULL
  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
  LInputSeries <- as.integer(length(IndPeriod1))
  IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
  if (inherits(QcontribDown, "OutputsModel")) {
    OutputsModel <- QcontribDown
    if (is.null(OutputsModel$RunOptions$WarmUpQsim)) {
      OutputsModel$RunOptions$WarmUpQsim <- rep(NA, length(RunOptions$IndPeriod_WarmUp))
    QsimDown <- c(OutputsModel$RunOptions$WarmUpQsim, OutputsModel$Qsim)
  } else if (is.vector(QcontribDown) && is.numeric(QcontribDown)) {
    OutputsModel <- list()
    class(OutputsModel) <- c("OutputsModel", class(RunOptions)[-1])
    QsimDown <- c(rep(NA, length(RunOptions$IndPeriod_WarmUp)),
                  QcontribDown)
  ## Parameters set up
  CParam <- Param[1L] # CParam in m/s
  KParam <- Param[2L] # KParam in mm/TS
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
PT <- InputsModel$LengthHydro * 1e3 / CParam / RunOptions$FeatFUN_MOD$TimeStep #PT in h PK <- sqrt(KParam * InputsModel$BasinAreas[-length(InputsModel$BasinAreas)] * 1e-3) * PT #m3/2 pdt1/2 ## Lag set up Lag <- function(t, Qroute, Qupstream){ Q <- c(Qupstream[1:(1 + floor(t))], Qroute[1:(length(Qroute) - (floor(t) + 1))]) return(Q) } ## set up initial states IniSD <- RunOptions$IniStates[grep("SD", names(RunOptions$IniStates))] if (length(IniSD) > 0) { if (sum(floor(PT)) + NbUpBasins != length(IniSD)) { stop( sprintf( "SD initial states has a length of %i and a length of %i is required", length(IniSD), sum(floor(PT)) + NbUpBasins ) ) } IniStates <- lapply(seq_len(NbUpBasins), function(x) { iStart <- 1 if (x > 1) { iStart <- iStart + sum(floor(PT[1:x - 1]) + 1) } as.vector(IniSD[iStart:(iStart + PT[x])]) }) } else { IniStates <- lapply( seq_len(NbUpBasins), function(iUpBasins) { iWarmUp <- seq.int( from = max(1, IndPeriod1[1] - floor(PT[iUpBasins]) - 1), to = max(1, IndPeriod1[1] - 1) ) ini <- InputsModel$Qupstream[iWarmUp, iUpBasins] if (length(ini) != floor(PT[iUpBasins] + 1)) { # If warm-up period is not enough long complete beginning with first value ini <- c(rep(ini[1], floor(PT[iUpBasins] + 1) - length(ini)), ini) } return(as.vector(ini)) } ) } ## Lag & route model computation Qsim_m3 <- matrix(0 , nrow = length(IndPeriod1), ncol = NbUpBasins) QsimDown_input <- matrix(QsimDown * InputsModel$BasinAreas[length(InputsModel$BasinAreas)] * 1e3, ncol = 1) for (upstream_basin in seq_len(NbUpBasins)) { Qupstream_m3 <- c(IniStates[[upstream_basin]], InputsModel$Qupstream[IndPeriod1, upstream_basin]) Qroute <- Qupstream_m3 for (q in seq_along(Qroute)[1:(length(Qroute) - 1)]){ Qroute[q + 1] <- ((Qroute[q]^0.5 + ((Qupstream_m3[q] + Qupstream_m3[q + 1])/2)^0.5 * tanh((((Qupstream_m3[q] + Qupstream_m3[q + 1])/2)^0.5)/PK[upstream_basin]) ) / (1 + (Qroute[q]/((Qupstream_m3[q] + Qupstream_m3[q + 1])/2))^0.5 * tanh((((Qupstream_m3[q] + Qupstream_m3[q + 1])/2)^0.5)/PK[upstream_basin])) )^2 } Qllr <- Lag(PT[upstream_basin], Qroute, Qupstream_m3)[IndPeriod1] Qsim_m3[, upstream_basin] <- Qllr } Qsim_m3 <- cbind(QsimDown_input, Qsim_m3)
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
Qsim_m3 <- rowSums(Qsim_m3) ## OutputsModel if ("Qsim_m3" %in% RunOptions$Outputs_Sim) { OutputsModel$Qsim_m3 <- Qsim_m3[IndPeriod2] } if ("Qsim" %in% RunOptions$Outputs_Sim) { # Convert back Qsim to mm OutputsModel$Qsim <- Qsim_m3[IndPeriod2] / sum(InputsModel$BasinAreas, na.rm = TRUE) / 1e3 # message("Qsim: ", paste(OutputsModel$Qsim, collapse = ", ")) } if ("QsimDown" %in% RunOptions$Outputs_Sim) { # Convert back Qsim to mm OutputsModel$QsimDown <- QsimDown[IndPeriod2] } # Warning for negative flows or NAs only in extended outputs if (length(RunOptions$Outputs_Sim) > 2) { if (any(OutputsModel$Qsim[!is.na(OutputsModel$Qsim)] < 0)) { warning(length(which(OutputsModel$Qsim < 0)), " time steps with negative flow, set to zero.") OutputsModel$Qsim[OutputsModel$Qsim < 0] <- 0 } # Warning for NAs if (any(is.na(OutputsModel$Qsim))) { warning(length(which(is.na(OutputsModel$Qsim))), " time steps with NA values") } } if ("StateEnd" %in% RunOptions$Outputs_Sim) { SD <- lapply(seq(NbUpBasins), function(x) { lastTS <- RunOptions$IndPeriod_Run[length(RunOptions$IndPeriod_Run)] InputsModel$Qupstream[(lastTS - floor(PT[x])):lastTS, x] }) if (is.null(OutputsModel$StateEnd)) { OutputsModel$StateEnd <- CreateIniStates(RunModel_LLR, InputsModel, SD = SD) } else { OutputsModel$StateEnd$SD <- SD } # message("StateEnd: ", paste(OutputsModel$StateEnd$SD, collapse = ", ")) } if ("WarmUpQsim" %in% RunOptions$Outputs_Sim) { OutputsModel$RunOptions$WarmUpQsim <- Qsim_m3[seq_len(length(RunOptions$IndPeriod_WarmUp))] / sum(InputsModel$BasinAreas, na.rm = TRUE) / 1e3 } if ("Param" %in% RunOptions$Outputs_Sim) { OutputsModel$RunOptions$Param <- c(Param, OutputsModel$RunOptions$Param) } class(OutputsModel) <- c(class(OutputsModel), "SD") return(OutputsModel) }