An error occurred while loading the file. Please try again.
-
Gaetano Raffaele authored92b16002
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from math import ceil, floor
import matplotlib.pyplot as plt
import numpy as np
from cached_property import cached_property
from scipy.stats import chi2
from extreme_data.eurocode_data.utils import EUROCODE_QUANTILE, YEAR_OF_INTEREST_FOR_RETURN_LEVEL
from extreme_data.meteo_france_data.scm_models_data.crocus.crocus_variables import AbstractSnowLoadVariable
from extreme_fit.estimator.margin_estimator.utils import fitted_linear_margin_estimator
from extreme_fit.distribution.gev.gev_params import GevParams
from extreme_fit.model.margin_model.utils import \
MarginFitMethod
from extreme_fit.model.margin_model.linear_margin_model.temporal_linear_margin_models import \
StationaryTemporalModel
from extreme_fit.model.utils import SafeRunException
from root_utils import classproperty
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
from spatio_temporal_dataset.utils import load_temporal_coordinates_and_dataset
class AbstractGevTrendTest(object):
RRunTimeError_TREND = 'R RunTimeError trend'
nb_years_for_quantile_evolution = 10
SIGNIFICANCE_LEVEL = 0.05
def __init__(self, years, maxima, starting_year, unconstrained_model_class,
constrained_model_class=StationaryTemporalModel,
quantile_level=EUROCODE_QUANTILE,
fit_method=MarginFitMethod.extremes_fevd_mle):
self.years = years
self.maxima = maxima
self.starting_year = starting_year
self.unconstrained_model_class = unconstrained_model_class
self.constrained_model_class = constrained_model_class
self.quantile_level = quantile_level
self.fit_method = fit_method
# Load observations, coordinates and datasets
self.coordinates, self.dataset = load_temporal_coordinates_and_dataset(self.maxima, self.years)
@cached_property
def constrained_estimator(self):
return fitted_linear_margin_estimator(self.constrained_model_class, self.coordinates, self.dataset,
self.starting_year, self.fit_method)
@cached_property
def unconstrained_estimator(self):
return fitted_linear_margin_estimator(self.unconstrained_model_class, self.coordinates, self.dataset,
self.starting_year, self.fit_method)
# Likelihood ratio test
@property
def is_significant(self) -> bool:
return self.likelihood_ratio > chi2.ppf(q=1 - self.SIGNIFICANCE_LEVEL, df=self.degree_freedom_chi2)
@property
def degree_freedom_chi2(self) -> int:
raise NotImplementedError
@classproperty
def total_number_of_parameters_for_unconstrained_model(cls) -> int:
raise NotImplementedError
@property
def aic(self):
aic = 2 * self.total_number_of_parameters_for_unconstrained_model + self.unconstrained_model_deviance
assert np.equal(self.unconstrained_estimator.result_from_model_fit.aic, aic)
return aic
@property
def likelihood_ratio(self):
assert self.unconstrained_model_deviance < self.constrained_model_deviance
return self.constrained_model_deviance - self.unconstrained_model_deviance
@property
def constrained_model_deviance(self):
return self.constrained_estimator.result_from_model_fit.deviance
@property
def unconstrained_model_deviance(self):
unconstrained_estimator = self.unconstrained_estimator
return unconstrained_estimator.result_from_model_fit.deviance
# Evolution of the GEV parameters and corresponding quantiles
def get_non_stationary_linear_coef(self, param_name: str):
return self.unconstrained_estimator.function_from_fit.get_coef(param_name,
AbstractCoordinates.COORDINATE_T)
@cached_property
def unconstrained_estimator_gev_params(self) -> GevParams:
# Constant parameters correspond to the gev params in 1958
return self.unconstrained_estimator.function_from_fit.get_params(coordinate=np.array([1958]),
is_transformed=False)
def time_derivative_times_years(self, nb_years):
# Compute the slope strength
slope = self._slope_strength()
# Delta T must in the same unit as were the parameter of slope mu1 and sigma1
slope *= nb_years * self.coordinates.transformed_distance_between_two_successive_years[0]
return slope
@property
def time_derivative_of_return_level(self):
return self.time_derivative_times_years(self.nb_years_for_quantile_evolution)
def relative_change_in_return_level(self, initial_year, final_year):
return_level_values = []
for year in [initial_year, final_year]:
gev_params = self.get_unconstrained_gev_params(year)
return_level_values.append(gev_params.quantile(self.quantile_level))
change_until_final_year = self.time_derivative_times_years(nb_years=final_year - initial_year)
change_in_between = (return_level_values[1] - return_level_values[0])
np.testing.assert_almost_equal(change_until_final_year, change_in_between, decimal=5)
initial_return_level = return_level_values[0]
return 100 * change_until_final_year / initial_return_level
def _slope_strength(self):
raise NotImplementedError
@staticmethod
def same_sign(a, b):
return (a > 0 and b > 0) or (a < 0 and b < 0)
@property
def mean_difference_same_sign_as_slope_strenght(self) -> bool:
return False
@property
def variance_difference_same_sign_as_slope_strenght(self) -> bool:
return False
def mean_difference(self, zeta0: float, mu1: float = 0.0, sigma1: float = 0.0) -> float:
return GevParams(loc=mu1, scale=sigma1, shape=zeta0, accept_zero_scale_parameter=True).mean
@property
def test_trend_constant_quantile(self):
return self.unconstrained_estimator_gev_params.quantile(p=self.quantile_level)
# Some class properties for display purpose
@classproperty
def marker(self):
raise NotImplementedError
@classproperty
def label(self):
return '\\mathcal{M}_{%s}'
# Some display function
def intensity_plot_wrt_standard_gumbel(self, massif_name, altitude, psnow):
ax = plt.gca()
sorted_maxima = sorted(self.maxima)
label_generic = '{} massif \nat {} m '.format(massif_name, altitude)
size = 15
# Plot for the empirical
standard_gumbel_quantiles = self.get_standard_gumbel_quantiles()
ax.plot(standard_gumbel_quantiles, sorted_maxima, linestyle='None',
label='Empirical model', marker='o', color='black')
ax_twiny = ax.twiny()
return_periods = [10, 25, 50]
quantiles = self.get_standard_quantiles_for_return_periods(return_periods, psnow)
ax_twiny.plot(quantiles, [0 for _ in quantiles], linewidth=0)
ax_twiny.set_xticks(quantiles)
ax_twiny.set_xticklabels([return_period for return_period in return_periods])
ax_twiny.set_xlabel('Return period w.r.t all annual maxima of GSL (years)', fontsize=size)
# Plot for the selected model with line break
unconstrained_empirical_quantiles = self.compute_empirical_quantiles(self.unconstrained_estimator)
# ax.plot(unconstrained_empirical_quantiles, sorted_maxima,
# label='Selected model, which is ${}$'.format(self.label))
# Plot tor the selected model for different year
end_real_proba = 1 - (0.02 / psnow)
stationary = True
if stationary:
self.plot_model(ax, None, end_proba=end_real_proba,
label='Selected model\nwhich is ${}$'.format(self.label),
color='grey')
else:
self.plot_model(ax, 1959, end_proba=end_real_proba,
label='Selected model, which is ${}$'.format(self.label))
self.plot_model(ax, 2019, end_proba=end_real_proba,
label='Selected model, which is ${}$'.format(self.label))
# Plot for the discarded model
# if 'Verdon' in massif_name and altitude == 300:
# q = [-1.4541688117485054, -1.2811308174310914, -1.216589300814509, -0.7635793791201918, -0.6298883422064275,
# -0.5275954855697504, -0.4577268043676126, -0.4497570331795861, -0.1647955002136654,
# -0.14492222503785876, -0.139173823298689, -0.11945617994263039, -0.07303100174657867,
# -5.497308509286266e-05, 0.13906416388625908, 0.15274793441408543, 0.1717763342727519,
# 0.17712605315013535, 0.17900143646245203, 0.371986176207554, 0.51640780422156, 0.7380550963951035,
# 0.7783015252180445, 0.887836077295502, 0.917853338231094, 0.9832396811506262, 1.0359396416309927,
# 1.1892663813729711, 1.2053261113817888, 1.5695111391491652, 2.3223652143938476, 2.674882764437432,
# 2.6955728524900406, 2.8155882785356896, 3.282838470153471, 3.2885313947906765]
# color = 'red'
# ax.plot(q, sorted_maxima,
# label='Discarded model, which is ${}$\n'.format('\mathcal{M}_{\zeta_0, \sigma_1}')
# + 'with $\zeta_0=0.84$',
# color=color)
ax_lim = [-1.5, 4]
ax.set_xlim(ax_lim)
ax_twiny.set_xlim(ax_lim)
ax.set_xticks([-1 + i for i in range(6)])
epsilon = 0.005
ax.set_ylim(bottom=-epsilon)
lalsize = 13
ax.tick_params(axis='both', which='major', labelsize=lalsize)
ax_twiny.tick_params(axis='both', which='major', labelsize=lalsize)
ax.yaxis.grid()
ax.set_xlabel("Standard Gumbel quantile", fontsize=size)
ax.set_ylabel("Non-zero annual maxima of GSL ({})".format(AbstractSnowLoadVariable.UNIT), fontsize=size)
ax.legend(prop={'size': 17})
def plot_model(self, ax, year, start_proba=0.02, end_proba=0.98, label='', color=None):
standard_gumbel = GevParams(0, 1, 0)
start_quantile = standard_gumbel.quantile(start_proba)
end_quantile = standard_gumbel.quantile(end_proba)
extended_quantiles = np.linspace(start_quantile, end_quantile, 500)
label = 'Y({})'.format(year) if year is not None else label
if year is None:
year = 2019
gev_params_year = self.get_unconstrained_gev_params(year)
extended_maxima = [gev_params_year.gumbel_inverse_standardization(q) for q in extended_quantiles]
ax.plot(extended_quantiles, extended_maxima, linestyle='-', label=label, color=color, linewidth=5)
def get_unconstrained_gev_params(self, year):
gev_params_year = self.unconstrained_estimator.function_from_fit.get_params(
coordinate=np.array([year]),
is_transformed=False)
return gev_params_year
def get_unconstrained_time_derivative_gev_params(self, year):
gev_params_year = self.unconstrained_estimator.function_from_fit.get_first_derivative_param(
coordinate=np.array([year]),
is_transformed=False,
dim=0)
return gev_params_year
def linear_extension(self, ax, q, quantiles, sorted_maxima):
# Extend the curve linear a bit if the return period 50 is not in the quantiles
def compute_slope_intercept(x, y):
x1, x2 = x[-2:]
y1, y2 = y[-2:]
a = (y2 - y1) / (x2 - x1)
b = y1 - a * x1
return a, b
def compute_maxima_corresponding_to_return_period(return_period_quantiles, quantiles, model_maxima):
a, b = compute_slope_intercept(quantiles, model_maxima)
return a * return_period_quantiles + b
quantile_return_period_50 = quantiles[-1]
if max(q) < quantile_return_period_50:
maxima_extended = compute_maxima_corresponding_to_return_period(quantile_return_period_50,
q,
sorted_maxima)
ax.plot([q[-1], quantile_return_period_50],
[sorted_maxima[-1], maxima_extended], linestyle='--', label='linear extension')
def qqplot_wrt_standard_gumbel(self, massif_name, altitude):
ax = plt.gca()
size = 15
standard_gumbel_quantiles = self.get_standard_gumbel_quantiles()
unconstrained_empirical_quantiles = self.compute_empirical_quantiles(self.unconstrained_estimator)
constrained_empirical_quantiles = self.compute_empirical_quantiles(self.constrained_estimator)
all_quantiles = standard_gumbel_quantiles + unconstrained_empirical_quantiles + constrained_empirical_quantiles
epsilon = 0.5
ax_lim = [min(all_quantiles) - epsilon, max(all_quantiles) + epsilon]
ax.plot(standard_gumbel_quantiles, standard_gumbel_quantiles, color='k')
# ax.plot(standard_gumbel_quantiles, constrained_empirical_quantiles, 'x',
# label='Stationary Gumbel model $\mathcal{M}_0$')
massif_name = massif_name.replace('_', ' ')
label_generic = '{} massif \nat {} m '.format(massif_name, altitude)
ax.plot(standard_gumbel_quantiles, unconstrained_empirical_quantiles, linestyle='None',
label=label_generic + '(selected model is ${}$)'.format(self.label), marker='o')
if 'Verdon' in massif_name and altitude == 300:
q = [-1.4541688117485054, -1.2811308174310914, -1.216589300814509, -0.7635793791201918, -0.6298883422064275,
-0.5275954855697504, -0.4577268043676126, -0.4497570331795861, -0.1647955002136654,
-0.14492222503785876, -0.139173823298689, -0.11945617994263039, -0.07303100174657867,
-5.497308509286266e-05, 0.13906416388625908, 0.15274793441408543, 0.1717763342727519,
0.17712605315013535, 0.17900143646245203, 0.371986176207554, 0.51640780422156, 0.7380550963951035,
0.7783015252180445, 0.887836077295502, 0.917853338231094, 0.9832396811506262, 1.0359396416309927,
1.1892663813729711, 1.2053261113817888, 1.5695111391491652, 2.3223652143938476, 2.674882764437432,
2.6955728524900406, 2.8155882785356896, 3.282838470153471, 3.2885313947906765]
print(len(q), len(standard_gumbel_quantiles))
ax.plot(standard_gumbel_quantiles, q, linestyle='None',
label=label_generic
+ '(discarded model is ${}$\n'.format('\mathcal{M}_{\zeta_0, \sigma_1}')
+ 'with $\zeta_0=0.84$)',
marker='o')
ax.set_xlabel("Standard Gumbel quantile", fontsize=size)
ax.set_ylabel("Standard Empirical quantile", fontsize=size)
ax.legend(loc='lower right', prop={'size': 10})
ax.set_xlim(ax_lim)
ax.set_ylim(ax_lim)
ticks = [i for i in range(ceil(ax_lim[0]), floor(ax_lim[1]) + 1)]
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.grid()
ax.tick_params(labelsize=size)
plt.show()
def get_standard_gumbel_quantiles(self):
# Standard Gumbel quantiles
standard_gumbel_distribution = GevParams(loc=0, scale=1, shape=0)
n = len(self.years)
standard_gumbel_quantiles = [standard_gumbel_distribution.quantile(i / (n + 1)) for i in range(1, n + 1)]
return standard_gumbel_quantiles
def get_standard_quantiles_for_return_periods(self, return_periods, psnow):
n = len(self.years)
p_list = [1 - ((1 / return_period) / psnow) for return_period in return_periods]
standard_gumbel_distribution = GevParams(loc=0, scale=1, shape=0)
corresponding_quantiles = [standard_gumbel_distribution.quantile(p) for p in p_list]
return corresponding_quantiles
def compute_empirical_quantiles(self, estimator):
empirical_quantiles = []
for year, maximum in sorted(zip(self.years, self.maxima), key=lambda t: t[1]):
gev_param = estimator.function_from_fit.get_params(
coordinate=np.array([year]),
is_transformed=False)
maximum_standardized = gev_param.gumbel_standardization(maximum)
empirical_quantiles.append(maximum_standardized)
return empirical_quantiles
# For some visualizations
def return_level_plot_comparison(self, ax, label, color=None):
# ax = plt.gca()
size = 15
# Load Gev parameter for the year of interest for the unconstrained estimator
gev_params, gev_params_with_corrected_shape = self.get_gev_params_with_big_shape_and_correct_shape()
suffix = 'in {}'.format(YEAR_OF_INTEREST_FOR_RETURN_LEVEL)
gev_params.return_level_plot_against_return_period(ax, color, linestyle='-', label=label,
suffix_return_level_label=suffix)
gev_params_with_corrected_shape.return_level_plot_against_return_period(ax, color=color, linestyle='--',
suffix_return_level_label=suffix)
def return_level_plot_difference(self, ax, ax2, label, color=None):
gev_params, gev_params_with_corrected_shape = self.get_gev_params_with_big_shape_and_correct_shape()
return_periods = list(range(2, 61))
quantile_with_big_shape = gev_params.get_return_level(return_periods)
quantile_with_small_shape = gev_params_with_corrected_shape.get_return_level(return_periods)
difference_quantile = quantile_with_big_shape - quantile_with_small_shape
relative_difference = 100 * difference_quantile / quantile_with_small_shape
# Plot the difference on the two axis
ax.vlines(50, 0, np.max(difference_quantile))
ax.plot(return_periods, difference_quantile, color=color, linestyle='-', label=label)
ax.legend(loc='upper left')
difference_ylabel = 'difference return level in 2019'
ax.set_ylabel(difference_ylabel + ' (kPa)')
ax2.vlines(50, 0, np.max(relative_difference))
ax2.plot(return_periods, relative_difference, color=color, linestyle='--', label=label)
ax2.legend(loc='upper right')
ax2.yaxis.grid()
ax2.set_ylabel('relative ' + difference_ylabel + ' (%)')
ax.set_xlabel('Return period')
ax.set_xticks([10 * i for i in range(1, 7)])
plt.gca().set_ylim(bottom=0)
def get_gev_params_with_big_shape_and_correct_shape(self):
gev_params = self.unconstrained_estimator.function_from_fit.get_params(
coordinate=np.array([YEAR_OF_INTEREST_FOR_RETURN_LEVEL]),
is_transformed=False) # type: GevParams
gev_params_with_corrected_shape = GevParams(loc=gev_params.location,
scale=gev_params.scale,
shape=0.5)
return gev_params, gev_params_with_corrected_shape
# Mean value
def unconstrained_average_mean_value(self, year_min, year_max) -> float:
mean_values = []
for year in range(year_min, year_max+1):
mean = self.get_unconstrained_gev_params(year).mean
mean_values.append(mean)
average_mean_value = np.mean(mean_values)
assert isinstance(average_mean_value, float)
return average_mean_value
# Derivative mean value in some year
def mean_value(self, year):
return self.get_unconstrained_gev_params(year).mean
def first_derivative_mean_value(self, year):
param_name_to_value = self.get_unconstrained_time_derivative_gev_params(year)
assert param_name_to_value[GevParams.SHAPE] == 0, 'The formula does not work if is not zero'
gev_params = self.get_unconstrained_gev_params(year)
gev_params.location = param_name_to_value[GevParams.LOC]
gev_params.scale = param_name_to_value[GevParams.SCALE]
return gev_params.mean