An error occurred while loading the file. Please try again.
-
Gaetano Raffaele authored71b5f833
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import glob
import numpy as np
import pandas as pd
from OBIA.OBIABase import *
from sklearn.model_selection import StratifiedGroupKFold, GroupShuffleSplit
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, accuracy_score, cohen_kappa_score, precision_recall_fscore_support
class ObjectBasedClassifier:
def __init__(self, object_layer, time_series_list, user_feature_list,
reference_data=None, ref_class_field='class', ref_id_field='id'):
self.obia_base = OBIABase(object_layer, ref_data=reference_data, ref_class_field=ref_class_field,
ref_id_field=ref_id_field)
for lst in time_series_list:
self.obia_base.add_raster_time_series_for_stats(lst)
for ras in user_feature_list:
self.obia_base.add_raster_for_stats(ras)
if reference_data is not None:
self.obia_base.populate_ref_db()
self.training_base = self.obia_base.get_reference_db_as_training_base(class_field=ref_class_field)
self.training_base['folds'] = []
return
def gen_k_folds(self, k, class_field='class'):
sgk = StratifiedGroupKFold(n_splits=k, shuffle=True)
for tr_i, ts_i in sgk.split(self.training_base['X'],
self.training_base[class_field],
self.training_base['groups']):
self.training_base['folds'].append((tr_i, ts_i))
# check if all classes are in all splits
n_classes = len(np.unique(self.training_base[class_field]))
ok = True
for f in self.training_base['folds']:
ok &= (len(np.unique(self.training_base[class_field][f[0]])) == n_classes and
len(np.unique(self.training_base[class_field][f[1]])) == n_classes)
if not ok:
self.training_base['folds'] = []
raise Exception("Not all classes are present in each fold/split.\n"
"Please check that you have enough groups (e.g. 2 x n_folds) per class.")
return
def gen_hold_out(self, test_train_ratio=0.5, n_splits=1, class_field='class'):
gss = GroupShuffleSplit(n_splits=n_splits, test_size=test_train_ratio)
for tr_i, ts_i in gss.split(self.training_base['X'],
self.training_base[class_field],
self.training_base['groups']):
self.training_base['folds'].append((tr_i, ts_i))
# check if all classes are in all splits
n_classes = len(np.unique(self.training_base[class_field]))
ok = True
for f in self.training_base['folds']:
ok &= (len(np.unique(self.training_base[class_field][f[0]])) == n_classes and
len(np.unique(self.training_base[class_field][f[1]])) == n_classes)
if not ok:
self.training_base['folds'] = []
raise Exception("Not all classes are present in each split.\n"
"Please check that you have enough groups (e.g. 2 x (1/test_train_ratio)) per class.")
def train_RF(self, n_estimators, class_field='class', return_true_vs_pred=False):
assert('folds' in self.training_base.keys())
models = []
results = []
yt_yp = []
for tr_i, ts_i in tqdm(self.training_base['folds'], desc='Training'):
models.append(RandomForestClassifier(n_estimators=n_estimators))
models[-1].fit(self.training_base['X'][tr_i], self.training_base[class_field][tr_i])
l, c = self.training_base['obj_id'][ts_i], models[-1].predict(self.training_base['X'][ts_i])
y_true, y_pred = self.obia_base.true_pred_bypixel(l, c, class_field)
results.append(
{
'conf_matrix': confusion_matrix(y_true, y_pred),
'accuracy': accuracy_score(y_true, y_pred),
'kappa' : cohen_kappa_score(y_true, y_pred),
'p_r_f1': precision_recall_fscore_support(y_true, y_pred, zero_division=0),
'importances' : models[-1].feature_importances_
}
)
if return_true_vs_pred:
results[-1]['true_vs_pred'] = (y_true, y_pred)
all_imp = np.vstack([x['importances'] for x in results])
summary = {
'accuracy_mean': np.mean([x['accuracy'] for x in results]),
'accuracy_std': np.std([x['accuracy'] for x in results]),
'kappa_mean': np.mean([x['kappa'] for x in results]),
'kappa_std': np.std([x['kappa'] for x in results]),
'prec_mean': np.mean([x['p_r_f1'][0] for x in results], axis=0),
'prec_std': np.std([x['p_r_f1'][0] for x in results], axis=0),
'rec_mean': np.mean([x['p_r_f1'][1] for x in results], axis=0),
'rec_std': np.std([x['p_r_f1'][1] for x in results], axis=0),
'f1_mean': np.mean([x['p_r_f1'][2] for x in results], axis=0),
'f1_std': np.std([x['p_r_f1'][2] for x in results], axis=0),
'importance_mean': {k:v for k, v in zip(self.obia_base.get_vars(), np.mean(all_imp, axis=0))},
'importance_std': {k:v for k, v in zip(self.obia_base.get_vars(), np.std(all_imp, axis=0))}
}
return models, summary, results
def classify(self, model, perc=None, output_file=None, compress='NONE'):
prg = tqdm(desc='Classification', total=len(self.obia_base.tiles))
if isinstance(model, list):
for t, L, X in self.obia_base.tiled_data(normalize=perc):
prob = []
for m in model:
prob.append(m.predict_proba(X))
prob = np.prod(prob, axis=0)
c = model[0].classes_[np.argmax(prob, axis=1)]
self.obia_base.populate_map(t, L, c, output_file, compress)
prg.update(1)
else:
for t,L,X in self.obia_base.tiled_data(normalize=perc):
c = model.predict(X)
self.obia_base.populate_map(t, L, c, output_file, compress)
prg.update(1)
return
#TEST CODE
def run_test(sample_folder):
lst1 = '{}/output/S2_processed/T31PDL/*/*FEAT.tif'.format(sample_folder)
obc = ObjectBasedClassifier('{}/output/segmentation/segmentation.tif'.format(sample_folder),
'{}/input/REF/ref_l2.shp'.format(sample_folder),
[lst1],
['{}/input/THR/THR_SPOT6.tif'.format(sample_folder)],
ref_class_field=['class', 'Class_L1a'])
obc.gen_k_folds(5, class_field='class')
m, s, r = obc.train_RF(100, return_true_vs_pred=True)
obc.classify(m, '{}/output/classification/firstmap_l1.tif'.format(sample_folder))
d = {'model':m, 'results':r, 'summary':s}
import pickle
with open('{}/output/test_out.pkl'.format(sample_folder), 'wb') as f:
pickle.dump(d, f)
from Postprocessing import Report
of = Report.generate_report_figures(
'{}/output/classification/firstmap_l1.tif'.format(sample_folder),
'{}/input/txt/palette_L0a.clr'.format(sample_folder), d['results'], d['summary'],
'{}/output/reports'.format(sample_folder), 'Testou')
with open('{}/output/test_out_figs.pkl'.format(sample_folder), 'wb') as f:
pickle.dump(of, f)
Report.generate_pdf(of, '{}/output/reports/firstmap_l1_report.pdf'.format(sample_folder),
'Testou')
return m, s, r