An error occurred while loading the file. Please try again.
-
Gaetano Raffaele authoredbf6a4132
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os.path
import sys
import rasterio as rio
from rasterio.windows import Window
from rasterio.features import shapes
import numpy as np
import geopandas as gpd
import pandas as pd
from enum import Enum
from Common.otb_numpy_proc import to_otb_pipeline
from skimage.measure import regionprops, label
import otbApplication as otb
from tqdm import tqdm
class OStats(Enum):
MEAN = 'mean'
STD = 'std'
MIN = 'min'
MAX = 'max'
def intensity_std(region, intensities):
# note the ddof arg to get the sample var if you so desire!
return np.std(intensities[region])
class OBIABase:
def __init__(self, object_layer,
ref_data=None, ref_id_field='id', ref_class_field='class',
nominal_tile_size=5000, background_label=0):
self.object_layer = object_layer
with rio.open(self.object_layer, 'r') as src:
self.crs = src.crs
self.transform = src.transform
self.background_label = background_label
if type(nominal_tile_size) is tuple:
self.nominal_tile_size = nominal_tile_size
elif type(nominal_tile_size) is int:
self.nominal_tile_size = (nominal_tile_size, nominal_tile_size)
else:
sys.exit('Invalid nominal tile size')
self.tiles, self.obj_to_tile = self.generate_tile_info(self.nominal_tile_size, self.background_label)
# Init database
self.ref_db = None
self.ref_obj_layer_pipe = None
if ref_data is not None:
assert(ref_id_field is not None and ref_class_field is not None)
self.init_ref_db(ref_data, ref_id_field, ref_class_field)
# Computation rasters
self.raster_files = []
self.raster_stats = []
self.raster_var_names = []
self.raster_groups = []
self.n_vars = 0
# Output raster
self.output_map = None
def init_ref_db(self, vector_file, id_field, class_field):
if isinstance(class_field, str):
class_field = [class_field]
ras_id = otb.Registry.CreateApplication('Rasterization')
ras_id.SetParameterString('in', vector_file)
ras_id.SetParameterString('im', self.object_layer)
ras_id.SetParameterString('mode', 'attribute')
ras_id.SetParameterString('mode.attribute.field', id_field)
ras_id.Execute()
#ids = ras_id.GetImageAsNumpyArray('out')
ras_cl = []
for cf in class_field:
ras_cl.append(otb.Registry.CreateApplication('Rasterization'))
ras_cl[-1].SetParameterString('in', vector_file)
ras_cl[-1].SetParameterString('im', self.object_layer)
ras_cl[-1].SetParameterString('mode', 'attribute')
ras_cl[-1].SetParameterString('mode.attribute.field', cf)
ras_cl[-1].Execute()
in_seg = to_otb_pipeline(self.object_layer)
intensity_img = otb.Registry.CreateApplication('ConcatenateImages')
intensity_img.AddImageToParameterInputImageList('il', in_seg.GetParameterOutputImage('out'))
intensity_img.AddImageToParameterInputImageList('il', ras_id.GetParameterOutputImage('out'))
[intensity_img.AddImageToParameterInputImageList('il', rcl.GetParameterOutputImage('out')) for rcl in ras_cl]
intensity_img.Execute()
ref_ol = otb.Registry.CreateApplication('BandMath')
ref_ol.AddImageToParameterInputImageList('il', in_seg.GetParameterOutputImage('out'))
ref_ol.AddImageToParameterInputImageList('il', ras_id.GetParameterOutputImage('out'))
ref_ol.SetParameterString('exp', 'im1b1 * (im2b1 > 0)')
ref_ol.Execute()
self.ref_obj_layer_pipe = [in_seg, ras_id, ref_ol]
self.ref_db = pd.DataFrame(data=[],
columns=['area', 'orig_label', 'polygon_id'] + class_field,
index=[])
r = otb.itkRegion()
for tn, t in tqdm(self.tiles.items(), desc='Init. Ref. DB', total=len(self.tiles)):
r['index'][0], r['index'][1] = t[0], t[1]
r['size'][0], r['size'][1] = t[2], t[3]
ref_ol.PropagateRequestedRegion('out', r)
intensity_img.PropagateRequestedRegion('out', r)
tile_ref_ol = ref_ol.GetImageAsNumpyArray('out').astype(np.int32)
tile_int_img = intensity_img.GetVectorImageAsNumpyArray('out').astype(int)
rp = regionprops(tile_ref_ol, intensity_image=tile_int_img)
self.ref_db = pd.concat([
self.ref_db,
pd.DataFrame(
data=[np.insert(o.intensity_min, 0, o.area) for o in rp if self.obj_to_tile[o.label] == tn],
columns=self.ref_db.columns,
index=[o.label for o in rp if self.obj_to_tile[o.label] == tn]
)]
)
return
def generate_tile_info(self, nominal_tile_size, background_label):
in_seg = to_otb_pipeline(self.object_layer)
self.W, self.H = in_seg.GetImageSize('out')
r = otb.itkRegion()
obj_bbox = {}
rw, rh = range(0, self.W, nominal_tile_size[0]), range(0, self.H, nominal_tile_size[1])
with tqdm(total=len(rw)*len(rh), desc='Gen. tile info') as pb:
for i in rw:
for j in rh:
r['index'][0], r['index'][1] = i, j
r['size'][0], r['size'][1] = min(nominal_tile_size[0], self.W-i), min(nominal_tile_size[1], self.H-j)
in_seg.PropagateRequestedRegion('out', r)
tile = in_seg.GetImageAsNumpyArray('out')
rp = regionprops(tile.astype(np.uint32))
for o in rp:
bbox = np.array([o.bbox[0]+j, o.bbox[1]+i, o.bbox[2]+j, o.bbox[3]+i])
if o.label in obj_bbox.keys():
obj_bbox[o.label].append(bbox)
else:
obj_bbox[o.label] = [bbox]
pb.update(1)
for o in obj_bbox.keys():
obj_bbox[o] = np.array(obj_bbox[o])
mn, mx = np.min(obj_bbox[o], axis=0), np.max(obj_bbox[o], axis=0)
obj_bbox[o] = [mn[0], mn[1], mx[2], mx[3]]
tx, ty = int(self.W / nominal_tile_size[0]) + 1, int(self.H / nominal_tile_size[1]) + 1
obj_to_tile = {}
tiles = dict.fromkeys(range(tx * ty))
for i in range(tx * ty):
tiles[i] = [np.inf, np.inf, 0, 0]
for o,bb in obj_bbox.items():
if o != background_label:
ix, iy = int(bb[1] / nominal_tile_size[0]), int(bb[0] / nominal_tile_size[1])
idx = ix * ty + iy
obj_to_tile[o] = idx
tiles[idx][0] = int(min(bb[1], tiles[idx][0]))
tiles[idx][1] = int(min(bb[0], tiles[idx][1]))
tiles[idx][2] = int(max(bb[3], tiles[idx][2]))
tiles[idx][3] = int(max(bb[2], tiles[idx][3]))
tiles = {k: [v[0],v[1],v[2]-v[0],v[3]-v[1]] for k,v in tiles.items() if not np.isinf(v[0])}
return tiles, obj_to_tile
def compute_stats_on_tile(self, tile_num, input_image, stats=[OStats.MEAN], on_ref=False):
r = otb.itkRegion()
r['index'][0], r['index'][1] = self.tiles[tile_num][0], self.tiles[tile_num][1]
r['size'][0], r['size'][1] = self.tiles[tile_num][2], self.tiles[tile_num][3]
if not on_ref:
obj = to_otb_pipeline(self.object_layer)
obj.PropagateRequestedRegion('out', r)
clip_obj = obj.ExportImage('out')
tile_obj = np.squeeze(clip_obj['array']).astype(np.uint32)
else:
assert (self.ref_obj_layer_pipe is not None)
self.ref_obj_layer_pipe[-1].PropagateRequestedRegion('out', r)
tile_obj = self.ref_obj_layer_pipe[-1].GetImageAsNumpyArray('out').astype(np.uint32)
#tile_obj = self.ref_obj_layer[r['index'][1]:r['index'][1]+r['size'][1],
# r['index'][0]:r['index'][0]+r['size'][0]]
si = otb.Registry.CreateApplication('Superimpose')
si.SetParameterString('inm', input_image)
si.SetParameterString('inr', self.object_layer)
si.SetParameterString('interpolator', 'nn')
si.Execute()
si.PropagateRequestedRegion('out', r)
clip_img = si.ExportImage('out')
tile_img = np.squeeze(clip_img['array'])
if OStats.STD in stats:
op = regionprops(tile_obj, intensity_image=tile_img, extra_properties=[intensity_std])
else:
op = regionprops(tile_obj, intensity_image=tile_img)
out_stats = {}
for o in op:
if (not on_ref and self.obj_to_tile[o.label] == tile_num) or \
(on_ref and self.obj_to_tile[self.ref_db["orig_label"][o.label]] == tile_num):
out_stats[o.label] = []
if OStats.MEAN in stats:
out_stats[o.label].append(o.intensity_mean)
if OStats.STD in stats:
out_stats[o.label].append(o.intensity_std)
if OStats.MIN in stats:
out_stats[o.label].append(o.intensity_min)
if OStats.MAX in stats:
out_stats[o.label].append(o.intensity_max)
out_stats[o.label] = np.array(out_stats[o.label]).flatten(order='F')
if len(out_stats) > 0:
return out_stats.keys(), np.vstack(list(out_stats.values()))
else:
return None, None
def add_raster_for_stats(self, raster_file, raster_name=None, stats=[OStats.MEAN], as_group=True):
self.raster_files.append(raster_file)
self.raster_stats.append(stats)
if raster_name is None:
raster_name = os.path.splitext(os.path.basename(raster_file))[0]
with rio.open(raster_file) as ds:
n_bands = ds.count
ds = None
to_append = [raster_name + '_{}_{}'.format(i+1,j.value) for i in range(n_bands) for j in stats]
if as_group:
self.raster_groups.extend(range(self.n_vars, self.n_vars+len(to_append)))
self.raster_var_names.append(to_append)
self.n_vars += len(to_append)
return
def add_raster_time_series_for_stats(self, raster_list, ts_name=None, stats=[OStats.MEAN]):
#Check
n_bands = []
for r in raster_list:
with rio.open(r) as ds:
n_bands.append(ds.count)
assert all(x == n_bands[0] for x in n_bands)
n_bands = n_bands[0]
pos = self.n_vars
for i,r in enumerate(raster_list):
if ts_name is not None:
raster_name = '{}_D{}'.format(ts_name,i)
self.add_raster_for_stats(r, stats=stats, raster_name=ts_name, as_group=False)
for i in range(n_bands):
for s in range(len(stats)):
self.raster_groups.append(list(range(len(stats)*i+s+pos,
len(stats)*i+s+pos+len(stats)*n_bands*len(raster_list),
len(stats)*n_bands)))
return
def get_full_stats_on_tile(self, tilenum):
out_db = pd.DataFrame(index=[o for o,t in self.obj_to_tile.items() if t == tilenum])
for rf,rs,rv in zip(self.raster_files, self.raster_stats, self.raster_var_names):
k,v = self.compute_stats_on_tile(tilenum, rf, rs)
if k is not None:
out_db.loc[k,rv] = v
return out_db
def populate_ref_db(self):
assert(self.ref_db is not None)
for t in tqdm(self.tiles.keys(), desc="Zonal stats on DB", total=len(self.tiles)):
for rf, rs, rv in zip(self.raster_files, self.raster_stats, self.raster_var_names):
k, v = self.compute_stats_on_tile(t, rf, rs, on_ref=True)
if k is not None:
self.ref_db.loc[k,rv] = v
return
def export_reference_db(self, out_vector): #TO BE CHANGED
with rio.open(self.object_layer) as ds:
feats = [{'properties': {'sample_id': v}, 'geometry': s} for s, v in
shapes(self.ref_obj_layer.astype(np.int32), mask=self.ref_obj_layer > 0, transform=ds.transform)]
crs = ds.crs.to_epsg()
vds = gpd.GeoDataFrame.from_features(feats)
vds = vds.set_crs(epsg=crs)
vds = vds.join(self.ref_db, on="sample_id")
vds.to_file(out_vector)
return
def get_vars(self):
return [item for sublist in self.raster_var_names for item in sublist]
def get_reference_db_as_training_base(self, class_field='class'):
if isinstance(class_field, str):
class_field = [class_field]
assert(self.ref_db is not None and len(self.raster_var_names)>0)
vars = self.get_vars()
out = {}
out['obj_id'] = self.ref_db['orig_label'].to_numpy(dtype=int)
out['X'] = self.ref_db[vars].to_numpy()
# compute percentiles and normalize
out['perc2'] = np.zeros(out['X'].shape[1])
out['perc98'] = np.zeros(out['X'].shape[1])
for g in self.raster_groups:
tmp = out['X'][:,g]
m,M = np.percentile(tmp, [2, 98])
if isinstance(g, list):
for x in g:
out['perc2'][x] = m
out['perc98'][x] = M
else:
out['perc2'][g] = m
out['perc98'][g] = M
out['X'][:,g] = (tmp - m)/(M - m)
for cf in class_field:
out[cf] = self.ref_db[cf].to_numpy(dtype=int)
out['groups'] = self.ref_db['polygon_id'].to_numpy(dtype=int)
return out
def tiled_data(self, normalize=None):
vars = [item for sublist in self.raster_var_names for item in sublist]
for tilenum in self.tiles.keys():
tile_data = self.get_full_stats_on_tile(tilenum)
L = tile_data.index.to_numpy(dtype=np.int32)
X = tile_data[vars].to_numpy()
if normalize is not None:
X = (X - normalize[0]) / (normalize[1] - normalize[0])
yield tilenum,L,X
def populate_map(self, tilenum, obj_id, classes, output_file=None, compress='NONE'):
r = otb.itkRegion()
r['index'][0], r['index'][1], r['size'][0], r['size'][1] = self.tiles[tilenum]
obj = to_otb_pipeline(self.object_layer)
obj.PropagateRequestedRegion('out', r)
clip_obj = obj.ExportImage('out')
tile_obj = np.squeeze(clip_obj['array']).astype(np.uint32)
tmp = np.zeros(np.max(tile_obj) + 1, dtype=int)
tmp[obj_id] = classes
if output_file is None:
if self.output_map is None:
self.output_map = np.zeros((self.H,self.W), dtype=np.int)
self.output_map[self.tiles[tilenum][1]:self.tiles[tilenum][1]+self.tiles[tilenum][3],
self.tiles[tilenum][0]:self.tiles[tilenum][0]+self.tiles[tilenum][2]] += tmp[tile_obj]
else:
if not os.path.exists(os.path.dirname(output_file)):
os.makedirs(os.path.dirname(output_file))
if tilenum == 0 and os.path.exists(output_file):
os.remove(output_file)
mode = 'w+' if not os.path.exists(output_file) else 'r+'
with rio.open(output_file, mode, driver='GTiff', width=self.W, height=self.H, crs=self.crs,
transform=self.transform, count=1, dtype=np.uint16, compress=compress) as dst:
win = Window(self.tiles[tilenum][0], self.tiles[tilenum][1],
self.tiles[tilenum][2], self.tiles[tilenum][3])
x = dst.read(1, window=win)
dst.write(x + tmp[tile_obj], window=win, indexes=1)
return
def export_raster_map(self, output_file, compress=False):
assert (self.output_map is not None)
if not os.path.exists(os.path.dirname(output_file)):
os.makedirs(os.path.dirname(output_file))
obj = to_otb_pipeline(self.object_layer)
arr = obj.ExportImage('out')
arr['array'] = self.output_map.astype(np.float32)
obj.ImportImage('in', arr)
if compress:
output_file = output_file + "?gdal:co:compress=deflate"
obj.SetParameterString('out', output_file)
obj.SetParameterOutputImagePixelType('out', otb.ImagePixelType_uint16)
obj.ExecuteAndWriteOutput()
def populate_export_raster_map(self, obj_id, classes, output_file, compress='NONE'):
for tn in tqdm(self.tiles.keys(), desc="Writing output map"):
self.populate_map(tn,obj_id,classes,output_file,compress)
def true_pred_bypixel(self, labels, predicted_classes, class_field='class'):
pred_c = np.zeros(np.max(self.ref_db['orig_label']).astype(int)+1)
pred_c[labels] = predicted_classes
support = []
for tn, t in self.tiled_objects(on_ref=True):
support.append(t[np.isin(t, labels)])
support = np.concatenate(support)
pred = pred_c[support]
true_c = np.zeros(np.max(self.ref_db['orig_label']).astype(int)+1)
# ATTENTION: works if "labels" is sorted (as provided by get_reference_...)
true_c[labels] = self.ref_db.loc[self.ref_db['orig_label'].isin(labels),class_field].to_numpy(dtype=int)
true = true_c[support]
return pred[pred>0], true[pred>0]
def tiled_objects(self, on_ref=False):
assert(self.tiles is not None)
idx = -1 if on_ref else 0
r = otb.itkRegion()
for tn, t in self.tiles.items():
r['index'][0], r['index'][1] = t[0], t[1]
r['size'][0], r['size'][1] = t[2], t[3]
self.ref_obj_layer_pipe[idx].PropagateRequestedRegion('out', r)
arr = self.ref_obj_layer_pipe[idx].GetImageAsNumpyArray('out').astype(np.uint32)
yield tn, arr