RunModel_GR4H.R 6.24 KiB
RunModel_GR4H <- function(InputsModel,RunOptions,Param) {
  ## Initialization of variables
  NParam <- 4;
  FortranOutputs <- .FortranOutputs(GR = "GR4H")$GR
  ## Arguments_check
  if (inherits(InputsModel,"InputsModel") == FALSE) { stop("'InputsModel' must be of class 'InputsModel'") }  
  if (inherits(InputsModel,"hourly"     ) == FALSE) { stop("'InputsModel' must be of class 'hourly'     ") }  
  if (inherits(InputsModel,"GR"         ) == FALSE) { stop("'InputsModel' must be of class 'GR'         ") }  
  if (inherits(RunOptions,"RunOptions"  ) == FALSE) { stop("'RunOptions' must be of class 'RunOptions'  ") }  
  if (inherits(RunOptions,"GR"          ) == FALSE) { stop("'RunOptions' must be of class 'GR'          ") }  
  if (!is.vector(Param) | !is.numeric(Param)) { stop("'Param' must be a numeric vector") }
  if (sum(!is.na(Param)) != NParam) { stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep = "")) }
  Param <- as.double(Param);
  Param_X1X3_threshold <- 1e-2
  Param_X4_threshold     <- 0.5
  if (Param[1L] < Param_X1X3_threshold) {
    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
    Param[1L] <- Param_X1X3_threshold
  if (Param[3L] < Param_X1X3_threshold) {
    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
    Param[3L] <- Param_X1X3_threshold
  if (Param[4L] < Param_X4_threshold) {
    warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
    Param[4L] <- Param_X4_threshold
  ## Input_data_preparation
  if (identical(RunOptions$IndPeriod_WarmUp,as.integer(0))) { RunOptions$IndPeriod_WarmUp <- NULL; }
  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
  LInputSeries <- as.integer(length(IndPeriod1))
  if ("all" %in% RunOptions$Outputs_Sim) { IndOutputs <- as.integer(1:length(FortranOutputs)); 
  } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
  ## Output_data_preparation
  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
  ## Use_of_IniResLevels
  if (!is.null(RunOptions$IniResLevels)) {
    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
  ## Call_fortan
  RESULTS <- .Fortran("frun_gr4h",PACKAGE = "airGR",
                      ## inputs
                      LInputs = LInputSeries,                             ### length of input and output series
                      InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/h]
                      InputsPE = InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/h]
                      NParam = as.integer(length(Param)),                 ### number of model parameter
                      Param = Param,                                      ### parameter set
                      NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
                      StateStart = RunOptions$IniStates,                  ### state variables used when the model run starts
                      NOutputs = as.integer(length(IndOutputs)),          ### number of output series
                      IndOutputs = IndOutputs,                            ### indices of output series
                      ## outputs
                      Outputs = matrix(as.double(-999.999),nrow = LInputSeries,ncol = length(IndOutputs)), ### output series [mm]
                      StateEnd = rep(as.double(-999.999),length(RunOptions$IniStates))                 ### state variables at the end of the model run
  RESULTS$Outputs[ round(RESULTS$Outputs ,3) == (-999.999)] <- NA;
  RESULTS$StateEnd[round(RESULTS$StateEnd,3) == (-999.999)] <- NA;
  if (ExportStateEnd) {
7172737475767778798081828384858687888990919293949596979899100101102103104105106107
RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4H, InputsModel = InputsModel, ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, verbose = FALSE) } ## Output_data_preparation ## OutputsModel_only if (ExportDatesR == FALSE & ExportStateEnd == FALSE) { OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); names(OutputsModel) <- FortranOutputs[IndOutputs]; } ## DatesR_and_OutputsModel_only if (ExportDatesR == TRUE & ExportStateEnd == FALSE) { OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } ## OutputsModel_and_SateEnd_only if (ExportDatesR == FALSE & ExportStateEnd == TRUE) { OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(RESULTS$StateEnd) ); names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } ## DatesR_and_OutputsModel_and_SateEnd if ((ExportDatesR == TRUE & ExportStateEnd == TRUE) | "all" %in% RunOptions$Outputs_Sim) { OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(RESULTS$StateEnd) ); names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } ## End rm(RESULTS); class(OutputsModel) <- c("OutputsModel","hourly","GR"); return(OutputsModel); }