Forked from reversaal / OhmPi
Source project has a limited visibility.
ohmpi.py 40.78 KiB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Update March 2022
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO).
"""

import os
import io
import json
import numpy as np
import csv
import time
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
import minimalmodbus  # for programmable power supply
from copy import deepcopy

# from mqtt_setup import mqtt_client_setup

# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
    import board  # noqa
    import busio  # noqa
    import adafruit_tca9548a  # noqa
    import adafruit_ads1x15.ads1115 as ads  # noqa
    from adafruit_ads1x15.analog_in import AnalogIn  # noqa
    from adafruit_mcp230xx.mcp23008 import MCP23008  # noqa
    from adafruit_mcp230xx.mcp23017 import MCP23017  # noqa
    import digitalio  # noqa
    from digitalio import Direction  # noqa
    from gpiozero import CPUTemperature  # noqa

    arm64_imports = True
except ImportError as error:
    print(colored(f'Import error: {error}', 'yellow'))
    arm64_imports = False
except Exception as error:
    print(colored(f'Unexpected error: {error}', 'red'))
    exit()


class OhmPi(object):
    """Create the main OhmPi object.

    Parameters
    ----------
    config : str, optional
        Path to the .json configuration file.
    sequence : str, optional
        Path to the .txt where the sequence is read. By default, a 1 quadrupole
        sequence: 1, 2, 3, 4 is used.
    """

    def __init__(self, config=None, sequence=None, mqtt=False, on_pi=None, idps=False):
        # flags and attributes
        if on_pi is None:
            _, on_pi = OhmPi.get_platform()
        self.sequence = sequence
        self.on_pi = on_pi  # True if run from the RaspberryPi with the hardware, otherwise False for random data
        self.status = 'idle'  # either running or idle
        self.run = False  # flag is True when measuring
        self.thread = None  # contains the handle for the thread taking the measurement
        self.path = 'data/'  # where to save the .csv

        # set loggers
        config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt)  # TODO: add SOH
        self.data_logger = config_data_logger
        self.exec_logger = config_exec_logger
        self.soh_logger = None
        print('Loggers:')
        print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue'))
        print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue'))
        print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue'))

        # read in hardware parameters (settings.py)
        self._read_hardware_parameters()

        # default acquisition parameters
        self.pardict = {
            'injection_duration': 0.2,
            'nbr_meas': 100,
            'sequence_delay': 1,
            'nb_stack': 1,
            'export_path': 'data/measurement.csv'
        }

        # read in acquisition parameters
        if config is not None:
            self._read_acquisition_parameters(config)

        self.exec_logger.debug('Initialized with configuration:' + str(self.pardict))

        # read quadrupole sequence
        if sequence is None:
            self.sequence = np.array([[1, 4, 2, 3]])
        else:
            self.read_quad(sequence)

        self.idps = idps  # flag to use dps for injection or not
        
        # connect to components on the OhmPi board
        if self.on_pi:
            # activation of I2C protocol
            self.i2c = busio.I2C(board.SCL, board.SDA)  # noqa

            # I2C connexion to MCP23008, for current injection
            self.mcp = MCP23008(self.i2c, address=0x20)

            # ADS1115 for current measurement (AB)
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x49)

            # ADS1115 for voltage measurement (MN)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x48)

            # current injection module
            if self.idps:
                self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1) # port name, slave address (in decimal)
                self.DPS.serial.baudrate = 9600                      # Baud rate 9600 as listed in doc
                self.DPS.serial.bytesize = 8                         # 
                self.DPS.serial.timeout  = 1                         # greater than 0.5 for it to work
                self.DPS.debug           = False                     # 
                self.DPS.serial.parity   = 'N'                       # No parity
                self.DPS.mode            = minimalmodbus.MODE_RTU    # RTU mode
                self.DPS.write_register(0x0001, 40, 0)   # max current allowed (36 mA for relays)
                # (last number) 0 is for mA, 3 is for A
            
            # injection courant and measure (TODO check if it works, otherwise back in run_measurement())
            self.pin0 = self.mcp.get_pin(0)
            self.pin0.direction = Direction.OUTPUT
            self.pin0.value = False
            self.pin1 = self.mcp.get_pin(1)
            self.pin1.direction = Direction.OUTPUT
            self.pin1.value = False


    def _read_acquisition_parameters(self, config):
        """Read acquisition parameters.
        Parameters can be:
            - nb_electrodes (number of electrode used, if 4, no MUX needed)
            - injection_duration (in seconds)
            - nbr_meas (total number of times the sequence will be run)
            - sequence_delay (delay in second between each sequence run)
            - nb_stack (number of stack for each quadrupole measurement)
            - export_path (path where to export the data, timestamp will be added to filename)

        Parameters
        ----------
        config : str
            Path to the .json or dictionary.
        """
        if isinstance(config, dict):
            self.pardict.update(config)
        else:
            with open(config) as json_file:
                dic = json.load(json_file)
            self.pardict.update(dic)
        self.exec_logger.debug('Acquisition parameters updated: ' + str(self.pardict))


    def _read_hardware_parameters(self):
        """Read hardware parameters from config.py
        """
        from config import OHMPI_CONFIG
        self.id = OHMPI_CONFIG['id']  # ID of the OhmPi
        self.r_shunt = OHMPI_CONFIG['R_shunt']  # reference resistance value in ohm
        self.Imax = OHMPI_CONFIG['Imax']  # maximum current
        self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA')
        self.coef_p2 = OHMPI_CONFIG['coef_p2']  # slope for current conversion for ads.P2, measurement in V/V
        self.coef_p3 = OHMPI_CONFIG['coef_p3']  # slope for current conversion for ads.P3, measurement in V/V
        # self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed
        # self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed
        self.nb_samples = OHMPI_CONFIG['integer']  # number of samples measured for each stack
        self.version = OHMPI_CONFIG['version']  # hardware version
        self.max_elec = OHMPI_CONFIG['max_elec']  # maximum number of electrodes
        self.board_address = OHMPI_CONFIG['board_address']
        self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')


    @staticmethod
    def find_identical_in_line(quads):
        """Find quadrupole which where A and B are identical.
        If A and B are connected to the same relay, the Pi burns (short-circuit).
        
        Parameters
        ----------
        quads : numpy.ndarray
            List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
        
        Returns
        -------
        output : 1D array of int
            List of index of rows where A and B are identical.
        """
        # TODO is this needed for M and N?

        # if we have a 1D array (so only 1 quadrupole), make it 2D
        if len(quads.shape) == 1:
            quads = quads[None, :]

        output = np.where(quads[:, 0] == quads[:, 1])[0]

        # output = []
        # if array_object.ndim == 1:
        #     temp = np.zeros(4)
        #     for i in range(len(array_object)):
        #         temp[i] = np.count_nonzero(array_object == array_object[i])
        #     if any(temp > 1):
        #         output.append(0)
        # else:
        #     for i in range(len(array_object[:,1])):
        #         temp = np.zeros(len(array_object[1,:]))
        #         for j in range(len(array_object[1,:])):
        #             temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j])
        #         if any(temp > 1):
        #             output.append(i)
        return output


    @staticmethod
    def get_platform():
        """Get platform name and check if it is a raspberry pi
        Returns
        =======
        str, bool
            name of the platform on which the code is running, boolean that is true if the platform is a raspberry pi"""

        platform = 'unknown'
        on_pi = False
        try:
            with io.open('/sys/firmware/devicetree/base/model', 'r') as f:
                platform = f.read().lower()
            if 'raspberry pi' in platform:
                on_pi = True
        except FileNotFoundError:
            pass
        return platform, on_pi


    def read_quad(self, filename):
        """Read quadrupole sequence from file.

        Parameters
        ----------
        filename : str
            Path of the .csv or .txt file with A, B, M and N electrodes.
            Electrode index start at 1.

        Returns
        -------
        output : numpy.ndarray
            Array of shape (number quadrupoles * 4).
        """
        output = np.loadtxt(filename, delimiter=" ", dtype=int)  # load quadrupole file

        # locate lines where the electrode index exceeds the maximum number of electrodes
        test_index_elec = np.array(np.where(output > self.max_elec))

        # locate lines where electrode A == electrode B
        test_same_elec = self.find_identical_in_line(output)

        # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
        if test_index_elec.size != 0:
            for i in range(len(test_index_elec[0, :])):
                self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
                                       f'exceeds the maximum number of electrodes')
            # sys.exit(1)
            output = None
        elif len(test_same_elec) != 0:
            for i in range(len(test_same_elec)):
                self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
            # sys.exit(1)
            output = None

        if output is not None:
            self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(output.shape[0]))

        self.sequence = output


    def switch_mux(self, electrode_nr, state, role):
        """Select the right channel for the multiplexer cascade for a given electrode.
        
        Parameters
        ----------
        electrode_nr : int
            Electrode index to be switched on or off.
        state : str
            Either 'on' or 'off'.
        role : str
            Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
        """
        if self.sequence.max() <= 4:  # only 4 electrodes so no MUX
            pass
        else:
            # choose with MUX board
            tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role])

            # find I2C address of the electrode and corresponding relay
            # considering that one MCP23017 can cover 16 electrodes
            electrode_nr = electrode_nr - 1  # switch to 0 indexing
            i2c_address = 7 - electrode_nr // 16  # quotient without rest of the division
            relay_nr = electrode_nr - (electrode_nr // 16) * 16
            relay_nr = relay_nr + 1  # switch back to 1 based indexing

            if i2c_address is not None:
                # select the MCP23017 of the selected MUX board
                mcp2 = MCP23017(tca[i2c_address])
                mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT

                if state == 'on':
                    mcp2.get_pin(relay_nr - 1).value = True
                else:
                    mcp2.get_pin(relay_nr - 1).value = False

                self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}')
            else:
                self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')


    def switch_mux_on(self, quadrupole):
        """ Switch on multiplexer relays for given quadrupole.
        
        Parameters
        ----------
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        """
        roles = ['A', 'B', 'M', 'N']
        # another check to be sure A != B
        if quadrupole[0] != quadrupole[1]:
            for i in range(0, 4):
                if quadrupole[i] > 0:
                    self.switch_mux(quadrupole[i], 'on', roles[i])
        else:
            self.exec_logger.error('A == B -> short circuit risk detected!')


    def switch_mux_off(self, quadrupole):
        """ Switch off multiplexer relays for given quadrupole.
        
        Parameters
        ----------
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        """
        roles = ['A', 'B', 'M', 'N']
        for i in range(0, 4):
            if quadrupole[i] > 0:
                self.switch_mux(quadrupole[i], 'off', roles[i])


    def reset_mux(self):
        """Switch off all multiplexer relays."""
        roles = ['A', 'B', 'M', 'N']
        for i in range(0, 4):
            for j in range(1, self.max_elec + 1):
                self.switch_mux(j, 'off', roles[i])
        self.exec_logger.debug('All MUX switched off.')


    def gain_auto(self, channel):
        """ Automatically set the gain on a channel

        Parameters
        ----------
        channel:

        Returns
        -------
            float
        """
        gain = 2 / 3
        if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
            gain = 2
        elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
            gain = 4
        elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
            gain = 8
        elif abs(channel.voltage) < 0.256:
            gain = 16
        self.exec_logger.debug(f'Setting gain to {gain}')
        return gain
        
        
    def compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5):
        """Estimating best Tx voltage based on different strategy.
        At first a half-cycle is made for a short duration with a fixed
        known voltage. This gives us Iab and Rab. We also measure Vmn.
        A constant c = vmn/iab is computed (only depends on geometric
        factor and ground resistivity, that doesn't change during a 
        quadrupole). Then depending on the strategy, we compute which
        vab to inject to reach the minimum/maximum Iab current or 
        min/max Vmn.
        This function also compute the polarity on Vmn (on which pin
        of the ADS1115 we need to measure Vmn to get the positive value).
        
        Parameters
        ----------
        best_tx_injtime : float, optional
            Time in milliseconds for the half-cycle used to compute Rab.
        strategy : str, optional
            Either:
            - vmin : compute Vab to reach a minimum Iab and Vmn
            - vmax : compute Vab to reach a maximum Iab and Vmn
            - constant : apply given Vab
        tx_volt : float, optional
            Voltage apply to try to guess the best voltage. 5 V applied 
            by default. If strategy "constant" is chosen, constant voltage
            to applied is "tx_volt".
        
        Returns
        -------
        vab : float
            Proposed Vab according to the given strategy.
        polarity : int
            Either 1 or -1 to know on which pin of the ADS the Vmn is measured.
        """
        
        # hardware limits
        voltage_min = 10  # mV
        voltage_max = 4500
        current_min = voltage_min / (self.r_shunt * 50)  # mA
        current_max = voltage_max / (self.r_shunt * 50)
        tx_max = 40  # volt
        
        # check of volt
        volt = tx_volt
        if volt > tx_max:
            print('sorry, cannot inject more than 40 V, set it back to 5 V')
            volt = 5
        
        # redefined the pin of the mcp (needed when relays are connected)
        self.pin0 = self.mcp.get_pin(0)
        self.pin0.direction = Direction.OUTPUT
        self.pin0.value = False
        self.pin1 = self.mcp.get_pin(1)
        self.pin1.direction = Direction.OUTPUT
        self.pin1.value = False
        
        # select a polarity to start with
        self.pin0.value = True
        self.pin1.value = False
        
        # set voltage for test
        self.DPS.write_register(0x0000, volt, 2) 
        self.DPS.write_register(0x09, 1) # DPS5005 on
        time.sleep(best_tx_injtime) # inject for given tx time
        
        # autogain
        self.ads_current = ads.ADS1115(self.i2c, gain=2/3, data_rate=860, address=0x49)
        self.ads_voltage = ads.ADS1115(self.i2c, gain=2/3, data_rate=860, address=0x48)
        print('current P0', AnalogIn(self.ads_current, ads.P0).voltage)
        print('voltage P0', AnalogIn(self.ads_voltage, ads.P0).voltage)
        print('voltage P2', AnalogIn(self.ads_voltage, ads.P2).voltage)
        gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0))
        gain_voltage0 = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0))
        gain_voltage2 = self.gain_auto(AnalogIn(self.ads_voltage, ads.P2))
        gain_voltage = np.min([gain_voltage0, gain_voltage2])
        print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage))
        self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x49)
        self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x48)
        
        # we measure the voltage on both A0 and A2 to guess the polarity
        I = (AnalogIn(self.ads_current, ads.P0).voltage) * 1000/50/self.r_shunt # measure current
        U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 # measure voltage
        U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000
        print('I (mV)', I*50*self.r_shunt)
        print('I (mA)', I)
        print('U0 (mV)', U0)
        print('U2 (mV)', U2)
        
        # check polarity
        polarity = 1  # by default, we guessed it right
        vmn = U0
        if U0 < 0: # we guessed it wrong, let's use a correction factor
            polarity = -1
            vmn = U2
        print('polarity', polarity)
        
        # compute constant
        c = vmn / I
        Rab = (volt * 1000) / I
        
        print('Rab', Rab)

        # implement different strategy
        if strategy == 'vmax':
            vmn_max = c * current_max
            if vmn_max < voltage_max and vmn_max > voltage_min:
                vab = current_max * Rab
                print('target max current')
            else:
                iab = voltage_max / c
                vab = iab * Rab
                print('target max voltage')
            if vab > 25000:
                vab = 25000
            vab = vab / 1000 * 0.9
            
        elif strategy == 'vmin':
            vmn_min = c * current_min
            if vmn_min > voltage_min and vmn_min < voltage_max:
                vab = current_min * Rab
                print('target min current')
            else:
                iab = voltage_min / c
                vab = iab * Rab
                print('target min voltage')
            if vab < 1000:
                vab = 1000
            vab = vab / 1000 * 1.1
        
        elif strategy == 'constant':
            vab = volt
        else:
            vab = 5
            
        #self.DPS.write_register(0x09, 0) # DPS5005 off
        self.pin0.value = False
        self.pin1.value = False
        return vab, polarity

        
    def run_measurement(self, quad=[1, 2, 3, 4], nb_stack=None, injection_duration=None,
                        autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1):
        """Do a 4 electrode measurement and measure transfer resistance obtained.

        Parameters
        ----------
        quad : list of int
            Quadrupole to measure, just for labelling. Only switch_mux_on/off
            really create the route to the electrodes.
        nb_stack : int, optional
            Number of stacks. A stacl is considered two half-cycles (one
            positive, one negative).
        injection_duration : int, optional
            Injection time in seconds.
        autogain : bool, optional
            If True, will adapt the gain of the ADS1115 to maximize the
            resolution of the reading.
        strategy : str, optional
            (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
            different strategy:
            - vmin: find lowest voltage that gives us a signal
            - vmax: find max voltage that are in the range
            For a constant value, just set the tx_volt.
        tx_volt : float, optional
            (V3.0 only) If specified, voltage will be imposed. If 0, we will look 
            for the best voltage. If a best Tx cannot be found, no
            measurement will be taken and values will be NaN.
        best_tx_injtime : float, optional
            (V3.0 only) Injection time in seconds used for finding the best voltage.
        """
        # check arguments
        if nb_stack is None:
            nb_stack = self.pardict['nb_stack']
        if injection_duration is None:
            injection_duration = self.pardict['injection_duration']
        if tx_volt > 0:
            strategy == 'constant'
        else:
            tx_volt = 5

        # inner variable initialization
        sum_i = 0
        sum_vmn = 0
        sum_ps = 0

        self.exec_logger.debug('Starting measurement')
        self.exec_logger.info('Waiting for data')

        # let's define the pin again as if we run through measure()
        # as it's run in another thread, it doesn't consider these
        # and this can lead to short circuit!
        self.pin0 = self.mcp.get_pin(0)
        self.pin0.direction = Direction.OUTPUT
        self.pin0.value = False
        self.pin1 = self.mcp.get_pin(1)
        self.pin1.direction = Direction.OUTPUT
        self.pin1.value = False
        
        # get best voltage to inject AND polarity
        if self.idps:
            tx_volt, polarity = self.compute_tx_volt(
                best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt)
            print('tx volt V:', tx_volt)
        else:
            polarity = 1
        
        # first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
        self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49, mode=0)
        self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48, mode=0)
        
        # turn on the power supply
        oor = False
        if self.idps:
            print('++++ tx_volt', tx_volt)
            if np.isnan(tx_volt) == False:
                self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V
                self.DPS.write_register(0x09, 1) # DPS5005 on
                time.sleep(0.05)
            else:
                print('no best voltage found, will not take measurement')
                oor = True
                
        if oor == False:
            if autogain:
                # compute autogain
                self.pin0.value = True
                self.pin1.value = False
                time.sleep(injection_duration)
                gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0))
                if polarity > 0:
                    gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0))
                else:
                    gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P2))
                self.pin0.value = False
                self.pin1.value = False
                print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage))
                self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x49, mode=0)
                self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x48, mode=0)

            self.pin0.value = False
            self.pin1.value = False
            
            # one stack = 2 half-cycles (one positive, one negative)
            pinMN = 0 if polarity > 0 else 2
            
            # sampling for each stack at the end of the injection
            sampling_interval = 10  # ms
            self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1

            # full data for waveform
            fulldata = []
            
            # start counter
            #  we sample every 10 ms (as using AnalogIn for both current
            # and voltage takes about 7 ms). When we go over the injection
            # duration, we break the loop and truncate the meas arrays
            # only the last values in meas will be taken into account
            start_time = time.time()
            for n in range(0, nb_stack * 2):  # for each half-cycles
                # current injection
                if (n % 2) == 0:
                    self.pin0.value = True
                    self.pin1.value = False
                else:
                    self.pin0.value = False
                    self.pin1.value = True  # current injection nr2
                print('stack', n, self.pin0.value, self.pin1.value)

                # measurement of current i and voltage u during injection
                meas = np.zeros((self.nb_samples, 3)) * np.nan
                start_delay = time.time()  # stating measurement time
                dt = 0
                for k in range(0, self.nb_samples):
                    # reading current value on ADS channels
                    meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
                    if pinMN == 0:
                        meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000
                    else:
                        meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 *-1
                    time.sleep(sampling_interval / 1000)
                    dt = time.time() - start_delay  # real injection time (s)
                    meas[k, 2] = time.time() - start_time
                    if dt > (injection_duration - 0 * sampling_interval /1000):
                        break
                
                # stop current injection
                self.pin0.value = False
                self.pin1.value = False
                end_delay = time.time()

                # truncate the meas array if we didn't fill the last samples
                meas = meas[:k+1]
                
                # measurement of current i and voltage u during off time
                measpp = np.zeros((meas.shape[0], 3)) * np.nan
                start_delay = time.time()  # stating measurement time
                dt = 0
                for k in range(0, measpp.shape[0]):
                    # reading current value on ADS channels
                    measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
                    if pinMN == 0:
                        measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000
                    else:
                        measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 *-1
                    time.sleep(sampling_interval / 1000)
                    dt = time.time() - start_delay  # real injection time (s)
                    measpp[k, 2] = time.time() - start_time
                    if dt > (injection_duration - 0 * sampling_interval /1000):
                        break
                
                end_delay = time.time()
                
                # truncate the meas array if we didn't fill the last samples
                measpp = measpp[:k+1]
                
                # we alternate on which ADS1115 pin we measure because of sign of voltage
                if pinMN == 0:
                    pinMN = 2
                else:
                    pinMN = 0
                
                # store data for full wave form
                fulldata.append(meas)
                fulldata.append(measpp)
                
                # wait once the actual injection time between two injection
                # so it's a 50% duty cycle
                #print('crenaux (s)', (end_delay - start_delay))
                #print('sleep for (s)', injection_duration - (end_delay - start_delay))
                #print(meas)
                #print(measpp)
            
            # TODO get battery voltage and warn if battery is running low
            # TODO send a message on SOH stating the battery level
                
            # let's do some calculation (out of the stacking loop)
            for n, meas in enumerate(fulldata[::2]):
                # take average from the samples per stack, then sum them all
                # average for the last third of the stacked values
                #  is done outside the loop
                sum_i = sum_i + (np.mean(meas[-int(meas.shape[0]//3):, 0]))
                vmn1 = np.mean(meas[-int(meas.shape[0]//3), 1])
                if (n % 2) == 0:
                    sum_vmn = sum_vmn - vmn1
                    sum_ps = sum_ps + vmn1
                else:
                    sum_vmn = sum_vmn + vmn1
                    sum_ps = sum_ps + vmn1
                
            if self.idps:
                self.DPS.write_register(0x0000, 0, 2)  # reset to 0 volt
                self.DPS.write_register(0x09, 0) # DPS5005 off
                print('off')
        else:
            sum_i = np.nan
            sum_vmn = np.nan
            sum_ps = np.nan
            
        # reshape full data to an array of good size
        # we need an array of regular size to save in the csv
        if oor == False:
            fulldata = np.vstack(fulldata)
            # we create a big enough array given nb_samples, number of
            # half-cycles (1 stack = 2 half-cycles), and twice as we 
            # measure decay as well
            a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 3)) * np.nan
            a[:fulldata.shape[0], :] = fulldata
            fulldata = a
        else:
            np.array([[]])

        # create a dictionary and compute averaged values from all stacks
        d = {
            "time": datetime.now().isoformat(),
            "A": quad[0],
            "B": quad[1],
            "M": quad[2],
            "N": quad[3],
            "inj time [ms]": (end_delay - start_delay) * 1000 if oor == False else 0,
            "Vmn [mV]": sum_vmn / (2 * nb_stack),
            "I [mA]": sum_i / (2 * nb_stack),
            "R [ohm]": sum_vmn / sum_i,
            "Ps [mV]": sum_ps / (2 * nb_stack),
            "nbStack": nb_stack,
            "Tx [V]": tx_volt if oor == False else 0,
            "CPU temp [degC]": CPUTemperature().temperature,
            "Nb samples [-]": self.nb_samples,
            "fulldata": fulldata,
        }
        a = deepcopy(d)
        a.pop('fulldata')
        print(a)
        
        # round number to two decimal for nicer string output
        output = [f'{k}\t' for k in d.keys()]
        output = str(output)[:-1] + '\n'
        for k in d.keys():
            if isinstance(d[k], float):
                val = np.round(d[k], 2)
            else:
                val = d[k]
                output += f'{val}\t'
        output = output[:-1]
        self.exec_logger.debug(output)

        return d


    def rs_check(self, tx_volt=12):
        """ Check contact resistance.
        """
        # create custom sequence where MN == AB
        # we only check the electrodes which are in the sequence (not all might be connected)
        elec = np.sort(np.unique(self.sequence.flatten())) # assumed order
        quads = np.vstack([
            elec[:-1],
            elec[1:],
            elec[:-1],
            elec[1:],
        ]).T
        if self.idps:
            quads[:, 2:] = 0  # we don't open Vmn to prevent burning the MN part
            # as it has a smaller range of accepted voltage
        
        # create filename to store RS
        export_path_rs = self.pardict['export_path'].replace('.csv', '') \
                      + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'

        # perform RS check
        self.run = True
        self.status = 'running'
        
        # make sure all mux are off to start with
        self.reset_mux()

        # measure all quad of the RS sequence
        for i in range(0, quads.shape[0]):
            quad = quads[i, :]  # quadrupole
            self.switch_mux_on(quad)  # put before raising the pins (otherwise conflict i2c)
            d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=1, tx_volt=tx_volt, autogain=False)
            
            if self.idps:
                voltage = tx_volt  # imposed voltage on dps5005
            else:
                voltage = d['Vmn [mV]']
            current = d['I [mA]']
            
            # compute resistance measured (= contact resistance)
            resist = abs(voltage / current) / 1000
            print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format(
                current, voltage, resist))
            msg = 'Contact resistance {:s}: {:.3f} kOhm'.format(
                str(quad), resist)
            self.exec_logger.debug(msg)
            
            # if contact resistance = 0 -> we have a short circuit!!
            if resist < 1e-5:
                msg = '!!!SHORT CIRCUIT!!! {:s}: {:.3f} kOhm'.format(
                    str(quad), resist)
                self.exec_logger.warning(msg)
                print(msg)
                
            # save data and print in a text file
            self.append_and_save(export_path_rs, {
                'A': quad[0],
                'B': quad[1],
                'RS [kOhm]': resist,
            })
            
            # close mux path and put pin back to GND
            self.switch_mux_off(quad)
            
        self.reset_mux()
        self.status = 'idle'
        self.run = False

    #
    #         # TODO if interrupted, we would need to restore the values
    #         # TODO or we offer the possiblity in 'run_measurement' to have rs_check each time?


    @staticmethod
    def append_and_save(filename, last_measurement):
        """Append and save last measurement dataframe.

        Parameters
        ----------
        filename : str
            filename to save the last measurement dataframe
        last_measurement : dict
            Last measurement taken in the form of a python dictionary
        """
        last_measurement = deepcopy(last_measurement)
        if 'fulldata' in last_measurement:
            d = last_measurement['fulldata']
            n = d.shape[0]
            if n > 1:
                idic = dict(zip(['i' + str(i) for i in range(n)], d[:,0]))
                udic = dict(zip(['u' + str(i) for i in range(n)], d[:,1]))
                tdic = dict(zip(['t' + str(i) for i in range(n)], d[:,2]))
                last_measurement.update(idic)
                last_measurement.update(udic)
                last_measurement.update(tdic)
            last_measurement.pop('fulldata')


        if os.path.isfile(filename):
            # Load data file and append data to it
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=False)
        else:
            # create data file and add headers
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writeheader()
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=True)


    def measure(self, **kwargs):
        """Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'.
        """
        self.run = True
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')

        def func():
            for g in range(0, self.pardict["nbr_meas"]):  # for time-lapse monitoring
                if self.run is False:
                    self.exec_logger.warning('Data acquisition interrupted')
                    break
                t0 = time.time()

                # create filename with timestamp
                filename = self.pardict["export_path"].replace('.csv',
                                                               f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
                self.exec_logger.debug(f'Saving to {filename}')

                # make sure all multiplexer are off
                self.reset_mux()

                # measure all quadrupole of the sequence
                for i in range(0, self.sequence.shape[0]):
                    quad = self.sequence[i, :]  # quadrupole
                    if self.run is False:
                        break

                    # call the switch_mux function to switch to the right electrodes
                    self.switch_mux_on(quad)

                    # run a measurement
                    if self.on_pi:
                        current_measurement = self.run_measurement(quad, **kwargs)
                    else:  # for testing, generate random data
                        current_measurement = {
                            'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]],
                            'R [ohm]': np.abs(np.random.randn(1))
                        }

                    # switch mux off
                    self.switch_mux_off(quad)

                    # log data to the data logger
                    self.data_logger.info(f'{current_measurement}')
                    # save data and print in a text file
                    self.append_and_save(filename, current_measurement)
                    self.exec_logger.debug('{:d}/{:d}'.format(i + 1, self.sequence.shape[0]))

                # compute time needed to take measurement and subtract it from interval
                # between two sequence run (= sequence_delay)
                measuring_time = time.time() - t0
                sleep_time = self.pardict["sequence_delay"] - measuring_time

                if sleep_time < 0:
                    # it means that the measuring time took longer than the sequence delay
                    sleep_time = 0
                    self.exec_logger.warning('The measuring time is longer than the sequence delay. '
                                             'Increase the sequence delay')

                # sleeping time between sequence
                if self.pardict["nbr_meas"] > 1:
                    time.sleep(sleep_time)  # waiting for next measurement (time-lapse)
            self.status = 'idle'

        self.thread = threading.Thread(target=func)
        self.thread.start()

    def stop(self):
        """Stop the acquisition.
        """
        self.run = False
        if self.thread is not None:
            self.thread.join()
        self.exec_logger.debug(f'Status: {self.status}')


VERSION = '2.1.0'

print(colored(r' ________________________________' + '\n' +
              r'|  _  | | | ||  \/  || ___ \_   _|' + '\n' +
              r'| | | | |_| || .  . || |_/ / | |' + '\n' +
              r'| | | |  _  || |\/| ||  __/  | |' + '\n' +
              r'\ \_/ / | | || |  | || |    _| |_' + '\n' +
              r' \___/\_| |_/\_|  |_/\_|    \___/ ', 'red'))
print('OhmPi start')
print('Version:', VERSION)
platform, on_pi = OhmPi.get_platform()
if on_pi:
    print(colored(f'Running on {platform} platform', 'green'))
    # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
    #       and emit a warning otherwise
    if not arm64_imports:
        print(colored(f'Warning: Required packages are missing.\n'
                      f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
    print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))

current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))

# for testing
if __name__ == "__main__":
    ohmpi = OhmPi(config='ohmpi_param.json')
    ohmpi.run_measurement()
    #ohmpi.measure()
    #ohmpi.read_quad('breadboard.txt')
    #ohmpi.measure()
    #time.sleep(20)
    #ohmpi.stop()