otbTensorflowModelServe.cxx 14.05 KiB
/*=========================================================================
  Copyright (c) Remi Cresson (IRSTEA). All rights reserved.
     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.
=========================================================================*/
#include "itkFixedArray.h"
#include "itkObjectFactory.h"
#include "otbWrapperApplicationFactory.h"
// Application engine
#include "otbStandardFilterWatcher.h"
#include "itkFixedArray.h"
// Tensorflow stuff
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
// Tensorflow model filter
#include "otbTensorflowMultisourceModelFilter.h"
// Tensorflow graph load
#include "otbTensorflowGraphOperations.h"
// Layerstack
#include "otbTensorflowSource.h"
// Streaming
#include "otbTensorflowStreamerFilter.h"
namespace otb
namespace Wrapper
class TensorflowModelServe : public Application
public:
  /** Standard class typedefs. */
  typedef TensorflowModelServe                       Self;
  typedef Application                                Superclass;
  typedef itk::SmartPointer<Self>                    Pointer;
  typedef itk::SmartPointer<const Self>              ConstPointer;
  /** Standard macro */
  itkNewMacro(Self);
  itkTypeMacro(TensorflowModelServe, Application);
  /** Typedefs for tensorflow */
  typedef otb::TensorflowMultisourceModelFilter<FloatVectorImageType, FloatVectorImageType> TFModelFilterType;
  typedef otb::TensorflowSource<FloatVectorImageType> InputImageSource;
  /** Typedef for streaming */
  typedef otb::ImageRegionSquareTileSplitter<FloatVectorImageType::ImageDimension> TileSplitterType;
  typedef otb::TensorflowStreamerFilter<FloatVectorImageType, FloatVectorImageType> StreamingFilterType;
  /** Typedefs for images */
  typedef FloatVectorImageType::SizeType SizeType;
  void DoUpdateParameters()
  // Store stuff related to one source
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
// struct ProcessObjectsBundle { InputImageSource m_ImageSource; SizeType m_PatchSize; std::string m_Placeholder; // Parameters keys std::string m_KeyIn; // Key of input image list std::string m_KeyPszX; // Key for samples sizes X std::string m_KeyPszY; // Key for samples sizes Y std::string m_KeyPHName; // Key for placeholder name in the tensorflow model }; // // Add an input source, which includes: // -an input image list // -an input patchsize (dimensions of samples) // void AddAnInputImage() { // Number of source unsigned int inputNumber = m_Bundles.size() + 1; // Create keys and descriptions std::stringstream ss_key_group, ss_desc_group, ss_key_in, ss_desc_in, ss_key_dims_x, ss_desc_dims_x, ss_key_dims_y, ss_desc_dims_y, ss_key_ph, ss_desc_ph; // Parameter group key/description ss_key_group << "source" << inputNumber; ss_desc_group << "Parameters for source #" << inputNumber; // Parameter group keys ss_key_in << ss_key_group.str() << ".il"; ss_key_dims_x << ss_key_group.str() << ".rfieldx"; ss_key_dims_y << ss_key_group.str() << ".rfieldy"; ss_key_ph << ss_key_group.str() << ".placeholder"; // Parameter group descriptions ss_desc_in << "Input image (or list to stack) for source #" << inputNumber; ss_desc_dims_x << "Input receptive field (width) for source #" << inputNumber; ss_desc_dims_y << "Input receptive field (height) for source #" << inputNumber; ss_desc_ph << "Name of the input placeholder for source #" << inputNumber; // Populate group AddParameter(ParameterType_Group, ss_key_group.str(), ss_desc_group.str()); AddParameter(ParameterType_InputImageList, ss_key_in.str(), ss_desc_in.str() ); AddParameter(ParameterType_Int, ss_key_dims_x.str(), ss_desc_dims_x.str()); SetMinimumParameterIntValue (ss_key_dims_x.str(), 1); AddParameter(ParameterType_Int, ss_key_dims_y.str(), ss_desc_dims_y.str()); SetMinimumParameterIntValue (ss_key_dims_y.str(), 1); AddParameter(ParameterType_String, ss_key_ph.str(), ss_desc_ph.str()); // Add a new bundle ProcessObjectsBundle bundle; bundle.m_KeyIn = ss_key_in.str(); bundle.m_KeyPszX = ss_key_dims_x.str(); bundle.m_KeyPszY = ss_key_dims_y.str(); bundle.m_KeyPHName = ss_key_ph.str(); m_Bundles.push_back(bundle); } void DoInit() {
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
// Documentation SetName("TensorflowModelServe"); SetDescription("Multisource deep learning classifier using TensorFlow. Change the " + tf::ENV_VAR_NAME_NSOURCES + " environment variable to set the number of sources."); SetDocLongDescription("The application run a TensorFlow model over multiple data sources. " "The number of input sources can be changed at runtime by setting the system " "environment variable " + tf::ENV_VAR_NAME_NSOURCES + ". For each source, you have to " "set (1) the placeholder name, as named in the TensorFlow model, (2) the receptive " "field and (3) the image(s) source. The output is a multiband image, stacking all " "outputs tensors together: you have to specify (1) the names of the output tensors, as " "named in the TensorFlow model (typically, an operator's output) and (2) the expression " "field of each output tensor. The output tensors values will be stacked in the same " "order as they appear in the \"model.output\" parameter (you can use a space separator " "between names). You might consider to use extended filename to bypass the automatic " "memory footprint calculator of the otb application engine, and set a good splitting " "strategy (Square tiles is good for convolutional networks) or use the \"optim\" " "parameter group to impose your squared tiles sizes"); SetDocAuthors("Remi Cresson"); AddDocTag(Tags::Learning); // Input/output images AddAnInputImage(); for (int i = 1; i < tf::GetNumberOfSources() ; i++) AddAnInputImage(); // Input model AddParameter(ParameterType_Group, "model", "model parameters"); AddParameter(ParameterType_Directory, "model.dir", "TensorFlow model_save directory"); MandatoryOn ("model.dir"); SetParameterDescription ("model.dir", "The model directory should contains the model Google Protobuf (.pb) and variables"); AddParameter(ParameterType_StringList, "model.userplaceholders", "Additional single-valued placeholders. Supported types: int, float, bool."); MandatoryOff ("model.userplaceholders"); SetParameterDescription ("model.userplaceholders", "Syntax to use is \"placeholder_1=value_1 ... placeholder_N=value_N\""); AddParameter(ParameterType_Bool, "model.fullyconv", "Fully convolutional"); MandatoryOff ("model.fullyconv"); // Output tensors parameters AddParameter(ParameterType_Group, "output", "Output tensors parameters"); AddParameter(ParameterType_Float, "output.spcscale", "The output spacing scale, related to the first input"); SetDefaultParameterFloat ("output.spcscale", 1.0); SetParameterDescription ("output.spcscale", "The output image size/scale and spacing*scale where size and spacing corresponds to the first input"); AddParameter(ParameterType_StringList, "output.names", "Names of the output tensors"); MandatoryOn ("output.names"); // Output Field of Expression AddParameter(ParameterType_Int, "output.efieldx", "The output expression field (width)"); SetMinimumParameterIntValue ("output.efieldx", 1); SetDefaultParameterInt ("output.efieldx", 1); MandatoryOn ("output.efieldx"); AddParameter(ParameterType_Int, "output.efieldy", "The output expression field (height)"); SetMinimumParameterIntValue ("output.efieldy", 1); SetDefaultParameterInt ("output.efieldy", 1); MandatoryOn ("output.efieldy"); // Fine tuning AddParameter(ParameterType_Group, "optim" , "This group of parameters allows optimization of processing time"); AddParameter(ParameterType_Bool, "optim.disabletiling", "Disable tiling"); MandatoryOff ("optim.disabletiling"); SetParameterDescription ("optim.disabletiling", "Tiling avoids to process a too large subset of image, but sometimes it can be useful to disable it"); AddParameter(ParameterType_Int, "optim.tilesizex", "Tile width used to stream the filter output"); SetMinimumParameterIntValue ("optim.tilesizex", 1); SetDefaultParameterInt ("optim.tilesizex", 16); AddParameter(ParameterType_Int, "optim.tilesizey", "Tile height used to stream the filter output"); SetMinimumParameterIntValue ("optim.tilesizey", 1); SetDefaultParameterInt ("optim.tilesizey", 16); // Output image AddParameter(ParameterType_OutputImage, "out", "output image");
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
// Example SetDocExampleParameterValue("source1.il", "spot6pms.tif"); SetDocExampleParameterValue("source1.placeholder", "x1"); SetDocExampleParameterValue("source1.rfieldx", "16"); SetDocExampleParameterValue("source1.rfieldy", "16"); SetDocExampleParameterValue("model.dir", "/tmp/my_saved_model/"); SetDocExampleParameterValue("model.userplaceholders", "is_training=false dropout=0.0"); SetDocExampleParameterValue("output.names", "out_predict1 out_proba1"); SetDocExampleParameterValue("out", "\"classif128tgt.tif?&streaming:type=tiled&streaming:sizemode=height&streaming:sizevalue=256\""); } // // Prepare bundles from the number of points // void PrepareInputs() { for (auto& bundle: m_Bundles) { // Setting the image source FloatVectorImageListType::Pointer list = GetParameterImageList(bundle.m_KeyIn); bundle.m_ImageSource.Set(list); bundle.m_Placeholder = GetParameterAsString(bundle.m_KeyPHName); bundle.m_PatchSize[0] = GetParameterInt(bundle.m_KeyPszX); bundle.m_PatchSize[1] = GetParameterInt(bundle.m_KeyPszY); otbAppLogINFO("Source info :"); otbAppLogINFO("Receptive field : " << bundle.m_PatchSize ); otbAppLogINFO("Placeholder name : " << bundle.m_Placeholder); } } void DoExecute() { // Load the Tensorflow bundle tf::LoadModel(GetParameterAsString("model.dir"), m_SavedModel); // Prepare inputs PrepareInputs(); // Setup filter m_TFFilter = TFModelFilterType::New(); m_TFFilter->SetGraph(m_SavedModel.meta_graph_def.graph_def()); m_TFFilter->SetSession(m_SavedModel.session.get()); m_TFFilter->SetOutputTensors(GetParameterStringList("output.names")); m_TFFilter->SetOutputSpacingScale(GetParameterFloat("output.spcscale")); otbAppLogINFO("Output spacing ratio: " << m_TFFilter->GetOutputSpacingScale()); // Get user placeholders TFModelFilterType::StringList expressions = GetParameterStringList("model.userplaceholders"); TFModelFilterType::DictType dict; for (auto& exp: expressions) { TFModelFilterType::DictElementType entry = tf::ExpressionToTensor(exp); dict.push_back(entry); otbAppLogINFO("Using placeholder " << entry.first << " with " << tf::PrintTensorInfos(entry.second)); } m_TFFilter->SetUserPlaceholders(dict); // Input sources for (auto& bundle: m_Bundles) { m_TFFilter->PushBackInputTensorBundle(bundle.m_Placeholder, bundle.m_PatchSize, bundle.m_ImageSource.Get()); } // Fully convolutional mode on/off
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
if (GetParameterInt("model.fullyconv")==1) { otbAppLogINFO("The TensorFlow model is used in fully convolutional mode"); m_TFFilter->SetFullyConvolutional(true); } // Output field of expression FloatVectorImageType::SizeType foe; foe[0] = GetParameterInt("output.efieldx"); foe[1] = GetParameterInt("output.efieldy"); m_TFFilter->SetOutputExpressionFields({foe}); otbAppLogINFO("Output field of expression: " << m_TFFilter->GetOutputExpressionFields()[0]); // Streaming if (GetParameterInt("optim.disabletiling") != 1) { // Get the tile size SizeType tileSize; tileSize[0] = GetParameterInt("optim.tilesizex"); tileSize[1] = GetParameterInt("optim.tilesizey"); // Check that the tile size is aligned to the field of expression for (unsigned int i = 0 ; i < FloatVectorImageType::ImageDimension ; i++) if (tileSize[i] % foe[i] != 0) { SizeType::SizeValueType newSize = 1 + std::floor(tileSize[i] / foe[i]); newSize *= foe[i]; otbAppLogWARNING("Aligning the tiling to the output expression field " << "for better performances (dim " << i << "). New value set to " << newSize) tileSize[i] = newSize; } otbAppLogINFO("Force tiling with squared tiles of " << tileSize) // Force the computation tile by tile m_StreamFilter = StreamingFilterType::New(); m_StreamFilter->SetOutputGridSize(tileSize); m_StreamFilter->SetInput(m_TFFilter->GetOutput()); SetParameterOutputImage("out", m_StreamFilter->GetOutput()); } else { otbAppLogINFO("Tiling disabled"); SetParameterOutputImage("out", m_TFFilter->GetOutput()); } } private: TFModelFilterType::Pointer m_TFFilter; StreamingFilterType::Pointer m_StreamFilter; tensorflow::SavedModelBundle m_SavedModel; // must be alive during all the execution of the application ! std::vector<ProcessObjectsBundle> m_Bundles; }; // end of class } // namespace wrapper } // namespace otb OTB_APPLICATION_EXPORT( otb::Wrapper::TensorflowModelServe )