Commit 7efe62b2 authored by Remi Cresson's avatar Remi Cresson
Browse files

Update prez

parent b90ec169
No related merge requests found
Pipeline #38584 passed with stages
in 2 minutes and 3 seconds
Showing with 26 additions and 8 deletions
+26 -8
This image diff could not be displayed because it is too large. You can view the blob instead.
otbtf_pres/illustrations/net_semseg_spot67.jpg

70.4 KB

otbtf_pres/illustrations/pyotbadvert.gif

38.2 KB

otbtf_pres/illustrations/pyotbadvert.png

36.6 KB | W: | H:

otbtf_pres/illustrations/pyotbadvert.png

45 KB | W: | H:

otbtf_pres/illustrations/pyotbadvert.png
otbtf_pres/illustrations/pyotbadvert.png
otbtf_pres/illustrations/pyotbadvert.png
otbtf_pres/illustrations/pyotbadvert.png
  • 2-up
  • Swipe
  • Onion skin
......@@ -271,7 +271,7 @@ tf_ds = TFRecords("/path/to/tfrecords_dir").read()
<br>
<ul>
<li>Ease the <h>implementation of deep nets</h> in python</li>
<li>Provides all the necessary to work smoothly with TensorflowModelServe</li>
<li>Provides everything to work smoothly with TensorflowModelServe</li>
</ul>
<br>
<img width="50%" data-src="illustrations/modelbase.png">
......@@ -379,7 +379,11 @@ app.write("output_y.tif")
<img width="50%" data-src="illustrations/fig12.10_new.png">
<br>
<p><h>Example</h>: simple U-Net like model for dense pixel classification</p>
<p><small>Cresson, R. (2020). Deep Learning for Remote Sensing Images with Open Source Software. CRC Press.</small></p>
<p><small>
Cresson, R. (2020).
Deep Learning for Remote Sensing Images with Open Source Software.
CRC Press.
</small></p>
</section>
</section>
......@@ -396,10 +400,22 @@ app.write("output_y.tif")
<section>
<h2>Large scale land cover mapping</h2>
<h4>Semantic segmentation of buildings footprint over france mainland at 1.5m spacing</h4>
<h4>Buildings footprint over france mainland from Spot-6/7</h4>
<img width="65%" data-src="illustrations/tosca.png">
<p><small>Product available at <a href="https://www.theia-land.fr/en/product/buildings-footprint"
target="_blank">https://www.theia-land.fr/en/product/buildings-footprint/</a></small></p>
<p><small>
Product available at
<a href="https://www.theia-land.fr/en/product/buildings-footprint"
target="_blank">https://www.theia-land.fr/en/product/buildings-footprint/</a>
</small></p>
</section>
<section>
<h4>Model designed for Spot-6/7 products</h4>
<img width="40%" data-src="illustrations/net_semseg_spot67.jpg">
<p><small>
Semantic segmentation network that inputs separately <h>multispectral</h> and
<h>panchromatic</h> rasters of Spot-6/7 images
</small></p>
</section>
<section data-background-image='illustrations/gif_2160.gif'></section>
......@@ -424,6 +440,7 @@ app.write("output_y.tif")
<section>
<h4>Easy to run</h4>
<img width="48px" data-src="illustrations/cli.png" style="float:left;padding-left:15%;margin:30px">
<pre style="width:1000px"><code data-trim class="bash">
# Download pre-trained model
wget https://tinyurl.com/sr4rsmodelv2
......@@ -490,7 +507,7 @@ if __name__ == "__main__":
# if you need to write:
infer.write("out", out_fn)
</code></pre>
<img width="20%" data-src="illustrations/pyotbadvert.png">
<img width="20%" data-src="illustrations/pyotbadvert.gif">
</section>
<section>
......@@ -539,10 +556,11 @@ if __name__ == "__main__":
<ul>
<li><h>Blog</h>: https://mdl4eo.irstea.fr/2022/04/09/bye-bye-clouds/</li>
<li><h>Paper</h>: https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1317-2022</li>
<li><h>Code</h> https://github.com/cnes/decloud</li>
</ul>
<img width="50%" data-src="illustrations/crga_os2_unet_slide3.png">
<p><small>Cresson, R., Narçon, N., Gaetano, R., Dupuis, A., Tanguy, Y., May, S., and Commandré, B.: COMPARISON OF CONVOLUTIONAL NEURAL NETWORKS FOR CLOUDY OPTICAL IMAGES RECONSTRUCTION FROM SINGLE OR MULTITEMPORAL JOINT SAR AND OPTICAL IMAGES, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1317–1326</small></p>
<p><small>Cresson, R., Narçon, N., Gaetano, R., Dupuis, A., Tanguy, Y., May, S., and Commandré, B.:
Comparison of CNNs or cloudy optical images reconstruction from single or multitemporal
joint SAR and optical images, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1317–1326</small></p>
</section>
<section>
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment