ohmpi.py 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Update March 2022
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO).
"""

import os
import io
import json
import numpy as np
import csv
import time
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers

# from mqtt_setup import mqtt_client_setup

# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
    import board  # noqa
    import busio  # noqa
    import adafruit_tca9548a  # noqa
    import adafruit_ads1x15.ads1115 as ads  # noqa
    from adafruit_ads1x15.analog_in import AnalogIn  # noqa
    from adafruit_mcp230xx.mcp23008 import MCP23008  # noqa
    from adafruit_mcp230xx.mcp23017 import MCP23017  # noqa
    import digitalio  # noqa
    from digitalio import Direction  # noqa
    from gpiozero import CPUTemperature  # noqa

    arm64_imports = True
except ImportError as error:
    print(colored(f'Import error: {error}', 'yellow'))
    arm64_imports = False
except Exception as error:
    print(colored(f'Unexpected error: {error}', 'red'))
    exit()


class OhmPi(object):
    """Create the main OhmPi object.

    Parameters
    ----------
    config : str, optional
        Path to the .json configuration file.
    sequence : str, optional
        Path to the .txt where the sequence is read. By default, a 1 quadrupole
        sequence: 1, 2, 3, 4 is used.
    """

    def __init__(self, config=None, sequence=None, mqtt=True, on_pi=None):
        # flags and attributes
        if on_pi is None:
            _, on_pi = OhmPi.get_platform()
        self.sequence = sequence
        self.on_pi = on_pi  # True if run from the RaspberryPi with the hardware, otherwise False for random data
        self.status = 'idle'  # either running or idle
        self.run = False  # flag is True when measuring
        self.thread = None  # contains the handle for the thread taking the measurement
        self.path = 'data/'  # where to save the .csv

        # set loggers
        config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt)  # TODO: add SOH
        self.data_logger = config_data_logger
        self.exec_logger = config_exec_logger
        self.soh_logger = None
        print('Loggers:')
        print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue'))
        print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue'))
        print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue'))

        # read in hardware parameters (settings.py)
        self._read_hardware_parameters()

        # default acquisition parameters
        self.pardict = {
            'injection_duration': 0.2,
            'nbr_meas': 100,
            'sequence_delay': 1,
            'nb_stack': 1,
            'export_path': 'data/measurement.csv'
        }

        # read in acquisition parameters
        if config is not None:
            self._read_acquisition_parameters(config)

        self.exec_logger.debug('Initialized with configuration:' + str(self.pardict))

        # read quadrupole sequence
        if sequence is None:
            self.sequence = np.array([[1, 2, 3, 4]])
        else:
            self.read_quad(sequence)

        # connect to components on the OhmPi board
        if self.on_pi:
            # activation of I2C protocol
            self.i2c = busio.I2C(board.SCL, board.SDA)  # noqa

            # I2C connexion to MCP23008, for current injection
            self.mcp = MCP23008(self.i2c, address=0x20)

            # ADS1115 for current measurement (AB)
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)

            # ADS1115 for voltage measurement (MN)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)

    def _read_acquisition_parameters(self, config):
        """Read acquisition parameters.
        Parameters can be:
            - nb_electrodes (number of electrode used, if 4, no MUX needed)
            - injection_duration (in seconds)
            - nbr_meas (total number of times the sequence will be run)
            - sequence_delay (delay in second between each sequence run)
            - stack (number of stack for each quadrupole measurement)
            - export_path (path where to export the data, timestamp will be added to filename)

        Parameters
        ----------
        config : str
            Path to the .json or dictionary.
        """
        if isinstance(config, dict):
            self.pardict.update(config)
        else:
            with open(config) as json_file:
                dic = json.load(json_file)
            self.pardict.update(dic)
        self.exec_logger.debug('Acquisition parameters updated: ' + str(self.pardict))

    def _read_hardware_parameters(self):
        """Read hardware parameters from settings.py.
        """
        from config import OHMPI_CONFIG
        self.id = OHMPI_CONFIG['id']  # ID of the OhmPi
        self.r_shunt = OHMPI_CONFIG['R_shunt']  # reference resistance value in ohm
        self.Imax = OHMPI_CONFIG['Imax']  # maximum current
        self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA')
        self.coef_p2 = OHMPI_CONFIG['coef_p2']  # slope for current conversion for ads.P2, measurement in V/V
        self.coef_p3 = OHMPI_CONFIG['coef_p3']  # slope for current conversion for ads.P3, measurement in V/V
        # self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed
        # self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed
        self.nb_samples = OHMPI_CONFIG['integer']  # number of samples measured for each stack
        self.version = OHMPI_CONFIG['version']  # hardware version
        self.max_elec = OHMPI_CONFIG['max_elec']  # maximum number of electrodes
        self.board_address = OHMPI_CONFIG['board_address']
        self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')

    @staticmethod
    def find_identical_in_line(quads):
        """Find quadrupole which where A and B are identical.
        If A and B are connected to the same relay, the Pi burns (short-circuit).
        
        Parameters
        ----------
        quads : 1D or 2D array
            List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
        
        Returns
        -------
        output : 1D array of int
            List of index of rows where A and B are identical.
        """
        # TODO is this needed for M and N?

        # if we have a 1D array (so only 1 quadrupole), make it 2D
        if len(quads.shape) == 1:
            quads = quads[None, :]

        output = np.where(quads[:, 0] == quads[:, 1])[0]

        # output = []
        # if array_object.ndim == 1:
        #     temp = np.zeros(4)
        #     for i in range(len(array_object)):
        #         temp[i] = np.count_nonzero(array_object == array_object[i])
        #     if any(temp > 1):
        #         output.append(0)
        # else:
        #     for i in range(len(array_object[:,1])):
        #         temp = np.zeros(len(array_object[1,:]))
        #         for j in range(len(array_object[1,:])):
        #             temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j])
        #         if any(temp > 1):
        #             output.append(i)
        return output

    @staticmethod
    def get_platform():
        """Get platform name and check if it is a raspberry pi"""

        platform = 'unknown'
        on_pi = False
        try:
            with io.open('/sys/firmware/devicetree/base/model', 'r') as f:
                platform = f.read().lower()
            if 'raspberry pi' in platform:
                on_pi = True
        except FileNotFoundError:
            pass
        return platform, on_pi

    def read_quad(self, filename):
        """Read quadrupole sequence from file.

        Parameters
        ----------
        filename : str
            Path of the .csv or .txt file with A, B, M and N electrodes.
            Electrode index start at 1.

        Returns
        -------
        output : numpy.array
            Array of shape (number quadrupoles * 4).
        """
        output = np.loadtxt(filename, delimiter=" ", dtype=int)  # load quadrupole file

        # locate lines where the electrode index exceeds the maximum number of electrodes
        test_index_elec = np.array(np.where(output > self.max_elec))

        # locate lines where electrode A == electrode B
        test_same_elec = self.find_identical_in_line(output)

        # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
        if test_index_elec.size != 0:
            for i in range(len(test_index_elec[0, :])):
                self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
                                       f'exceeds the maximum number of electrodes')
            # sys.exit(1)
            output = None
        elif len(test_same_elec) != 0:
            for i in range(len(test_same_elec)):
                self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
            # sys.exit(1)
            output = None

        if output is not None:
            self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(output.shape[0]))

        self.sequence = output

    def switch_mux(self, electrode_nr, state, role):
        """Select the right channel for the multiplexer cascade for a given electrode.
        
        Parameters
        ----------
        electrode_nr : int
            Electrode index to be switched on or off.
        state : str
            Either 'on' or 'off'.
        role : str
            Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
        """
        if self.sequence.max() <= 4:  # only 4 electrodes so no MUX
            pass
        else:
            # choose with MUX board
            tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role])

            # find I2C address of the electrode and corresponding relay
            # TODO from number of electrode, the below can be guessed
            # considering that one MCP23017 can cover 16 electrodes
            electrode_nr = electrode_nr - 1  # switch to 0 indexing
            i2c_address = 7 - electrode_nr // 16  # quotient without rest of the division
            relay_nr = electrode_nr - (electrode_nr // 16) * 16
            relay_nr = relay_nr + 1  # switch back to 1 based indexing

            # if electrode_nr < 17:
            #     i2c_address = 7
            #     relay_nr = electrode_nr
            # elif 16 < electrode_nr < 33:
            #     i2c_address = 6
            #     relay_nr = electrode_nr - 16
            # elif 32 < electrode_nr < 49:
            #     i2c_address = 5
            #     relay_nr = electrode_nr - 32
            # elif 48 < electrode_nr < 65:
            #     i2c_address = 4
            #     relay_nr = electrode_nr - 48

            if i2c_address is not None:
                # select the MCP23017 of the selected MUX board
                mcp2 = MCP23017(tca[i2c_address])
                mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT

                if state == 'on':
                    mcp2.get_pin(relay_nr - 1).value = True
                else:
                    mcp2.get_pin(relay_nr - 1).value = False

                self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}')
            else:
                self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')

    def switch_mux_on(self, quadrupole):
        """ Switch on multiplexer relays for given quadrupole.
        
        Parameters
        ----------
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        """
        roles = ['A', 'B', 'M', 'N']
        # another check to be sure A != B
        if quadrupole[0] != quadrupole[1]:
            for i in range(0, 4):
                self.switch_mux(quadrupole[i], 'on', roles[i])
        else:
            self.exec_logger.error('A == B -> short circuit risk detected!')

    def switch_mux_off(self, quadrupole):
        """ Switch off multiplexer relays for given quadrupole.
        
        Parameters
        ----------
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        """
        roles = ['A', 'B', 'M', 'N']
        for i in range(0, 4):
            self.switch_mux(quadrupole[i], 'off', roles[i])

    def reset_mux(self):
        """Switch off all multiplexer relays."""
        roles = ['A', 'B', 'M', 'N']
        for i in range(0, 4):
            for j in range(1, self.max_elec + 1):
                self.switch_mux(j, 'off', roles[i])
        self.exec_logger.debug('All MUX switched off.')

    def gain_auto(self, channel):
        """ Automatically set the gain on a channel

        Parameters
        ----------
        channel:

        Returns
        -------
            float
        """
        gain = 2 / 3
        if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
            gain = 2
        elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
            gain = 4
        elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
            gain = 8
        elif abs(channel.voltage) < 0.256:
            gain = 16
        self.exec_logger.debug(f'Setting gain to {gain}')
        return gain

    def run_measurement(self, quad, nb_stack=None, injection_duration=None):
        """ Do a 4 electrode measurement and measure transfer resistance obtained.

        Parameters
        ----------
        nb_stack : int, optional
            Number of stacks.
        injection_duration : int, optional
            Injection time in seconds.
        quad : list of int
            Quadrupole to measure.
        """
        # TODO here we can add the current_injected or voltage_injected in mA or mV
        # check arguments
        if nb_stack is None:
            nb_stack = self.pardict['stack']
        if injection_duration is None:
            injection_duration = self.pardict['injection_duration']

        start_time = time.time()

        # inner variable initialization
        injection_current = 0
        sum_vmn = 0
        sum_ps = 0

        # injection courant and measure
        pin0 = self.mcp.get_pin(0)
        pin0.direction = Direction.OUTPUT
        pin1 = self.mcp.get_pin(1)
        pin1.direction = Direction.OUTPUT
        pin0.value = False
        pin1.value = False

        self.exec_logger.debug('Starting measurement')
        self.exec_logger.info('Waiting for data')

        # FUNCTION AUTOGAIN
        # ADS1115 for current measurement (AB)
        self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
        # ADS1115 for voltage measurement (MN)
        self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
        # try auto gain
        pin1.value = True
        pin0.value = False
        time.sleep(injection_duration)
        gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0))
        gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0, ads.P1))
        pin0.value = False
        pin1.value = False
        print(gain_current)
        print(gain_voltage)
        self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x48)
        self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x49)

        # TODO I don't get why 3 + 2*nb_stack - 1? why not just range(nb_stack)?
        # or do we consider 1 stack = one full polarity? do we discard the first 3 readings?
        for n in range(0, 3 + 2 * nb_stack - 1):
            # current injection
            if (n % 2) == 0:
                pin1.value = True
                pin0.value = False  # current injection polarity nr1
            else:
                pin0.value = True
                pin1.value = False  # current injection nr2
            start_delay = time.time()  # stating measurement time
            time.sleep(injection_duration)  # delay depending on current injection duration

            # measurement of current i and voltage u
            # sampling for each stack at the end of the injection
            meas = np.zeros((self.nb_samples, 3))
            for k in range(0, self.nb_samples):
                # reading current value on ADS channel A0
                meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
                meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
                # reading voltage value on ADS channel A2
                # meas[k, 2] = AnalogIn(self.ads_voltage, ads.P1).voltage * self.coef_p3 * 1000

            # stop current injection
            pin1.value = False
            pin0.value = False
            end_delay = time.time()

            # take average from the samples per stack, then sum them all
            # average for all stack is done outside the loop
            injection_current = injection_current + (np.mean(meas[:, 0]))
            vmn1 = np.mean(meas[:, 1]) - np.mean(meas[:, 2])
            if (n % 2) == 0:
                sum_vmn = sum_vmn - vmn1
                sum_ps = sum_ps + vmn1
            else:
                sum_vmn = sum_vmn + vmn1
                sum_ps = sum_ps + vmn1

            # TODO get battery voltage and warn if battery is running low

            end_calc = time.time()

            # TODO I am not sure I understand the computation below
            # wait twice the actual injection time between two injection
            # so it's a 50% duty cycle right?
            time.sleep(2 * (end_delay - start_delay) - (end_calc - start_delay))

        # create a dictionary and compute averaged values from all stacks
        d = {
            "time": [datetime.now().isoformat()],
            "A": quad[0],
            "B": quad[1],
            "M": quad[2],
            "N": quad[3],
            "inj time [ms]": (end_delay - start_delay) * 1000,
            "Vmn [mV]": [(sum_vmn / (3 + 2 * nb_stack - 1))],
            "I [mA]": [(injection_current / (3 + 2 * nb_stack - 1))],
            "R [ohm]": [(sum_vmn / (3 + 2 * nb_stack - 1) / (injection_current / (3 + 2 * nb_stack - 1)))],
            "Ps [mV]": [(sum_ps / (3 + 2 * nb_stack - 1))],
            "nbStack": [nb_stack],
            "CPU temp [degC]": [CPUTemperature().temperature],
            "Time [s]": [(-start_time + time.time())],
            "Nb samples [-]": [self.nb_samples]
        }

        # round number to two decimal for nicer string output
        output = [f'{k}\t' for k in d.keys()]
        output = str(output)[:-1] + '\n'
        for k in d.keys():
            if isinstance(d[k], float):
                val = np.round(d[k], 2)
            else:
                val = d[k]
                output += f'{val}\t'
        output = output[:-1]
        self.exec_logger.debug(output)
        time.sleep(1)  # NOTE: why this?

        return d

    def rs_check(self):
        """ Check contact resistance.
        """
        # create custom sequence where MN == AB
        nelec = self.sequence.max()  # number of elec used in the sequence
        quads = np.vstack([
            np.arange(nelec - 1) + 1,
            np.arange(nelec - 1) + 2,
            np.arange(nelec - 1) + 1,
            np.arange(nelec - 1) + 2
        ]).T

        for i in range(0, quads.shape[0]):
            quad = quads[i, :]  # quadrupole
            self.reset_mux()
            self.switch_mux_on(quad)
            pin0 = self.mcp.get_pin(0)
            pin0.direction = Direction.OUTPUT
            pin1 = self.mcp.get_pin(1)
            pin1.direction = Direction.OUTPUT
            pin0.value = False
            pin1.value = False

            print(quad)
            # call the switch_mux function to switch to the right electrodes
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
            # ADS1115 for voltage measurement (MN)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
            pin1.value = True
            pin0.value = False
            time.sleep(0.2)
            current = AnalogIn(self.ads_current, ads.P0).voltage / (50 * self.r_shunt)
            voltage = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * 2.5
            resistance = voltage / current
            # print(B)
            # print(A)
            print(abs(round(resistance / 1000, 1)), "kOhm")
            self.switch_mux_off(quad)
            pin0.value = False
            pin1.value = False

    #         # create backup TODO not good
    #         export_path = self.pardict['export_path']
    #         sequence = self.sequence.copy()
    #
    #         # assign new value
    #         self.pardict['export_path'] = export_path.replace('.csv', '_rs.csv')
    #         self.sequence = quads
    #         print(self.sequence)
    #
    #         # run the RS check
    #         self.log_exec('RS check (check contact resistance)', level='debug')
    #         self.measure()
    #
    #         # restore
    #         self.pardict['export_path'] = export_path
    #         self.sequence = sequence
    #
    #         # TODO if interrupted, we would need to restore the values
    #         # TODO or we offer the possiblity in 'run_measurement' to have rs_check each time?

    @staticmethod
    def append_and_save(filename, last_measurement):
        """Append and save last measurement dataframe.

        Parameters
        ----------
        filename : str
            filename to save the last measurement dataframe
        last_measurement : dict
            Last measurement taken in the form of a python dictionary
        """

        if os.path.isfile(filename):
            # Load data file and append data to it
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=False)
        else:
            # create data file and add headers
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writeheader()
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=True)

    def measure(self):
        """Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'.
        """
        self.run = True
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')

        def func():
            for g in range(0, self.pardict["nbr_meas"]):  # for time-lapse monitoring
                if self.run is False:
                    self.exec_logger.warning('Data acquisition interrupted')
                    break
                t0 = time.time()

                # create filename with timestamp
                filename = self.pardict["export_path"].replace('.csv',
                                                               f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
                self.exec_logger.debug(f'Saving to {filename}')

                # make sure all multiplexer are off
                self.reset_mux()

                # measure all quadrupole of the sequence
                for i in range(0, self.sequence.shape[0]):
                    quad = self.sequence[i, :]  # quadrupole
                    if self.run is False:
                        break

                    # call the switch_mux function to switch to the right electrodes
                    self.switch_mux_on(quad)

                    # run a measurement
                    if self.on_pi:
                        current_measurement = self.run_measurement(quad, self.pardict["stack"],
                                                                   self.pardict["injection_duration"])
                    else:  # for testing, generate random data
                        current_measurement = {
                            'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]],
                            'R [ohm]': np.abs(np.random.randn(1))
                        }

                    # switch mux off
                    self.switch_mux_off(quad)

                    # log data to the data logger
                    self.data_logger.info(f'{current_measurement}')
                    # save data and print in a text file
                    self.append_and_save(filename, current_measurement)
                    self.exec_logger.debug('{:d}/{:d}'.format(i + 1, self.sequence.shape[0]))

                # compute time needed to take measurement and subtract it from interval
                # between two sequence run (= sequence_delay)
                measuring_time = time.time() - t0
                sleep_time = self.pardict["sequence_delay"] - measuring_time

                if sleep_time < 0:
                    # it means that the measuring time took longer than the sequence delay
                    sleep_time = 0
                    self.exec_logger.warning('The measuring time is longer than the sequence delay. '
                                             'Increase the sequence delay')

                # sleeping time between sequence
                if self.pardict["nbr_meas"] > 1:
                    time.sleep(sleep_time)  # waiting for next measurement (time-lapse)
            self.status = 'idle'

        self.thread = threading.Thread(target=func)
        self.thread.start()

    def stop(self):
        """Stop the acquisition.
        """
        self.run = False
        if self.thread is not None:
            self.thread.join()
        self.exec_logger.debug(f'Status: {self.status}')


# mqtt_client, measurement_topic = mqtt_client_setup()

VERSION = '2.0.2'

print(colored(r' ________________________________' + '\n' +
              r'|  _  | | | ||  \/  || ___ \_   _|' + '\n' +
              r'| | | | |_| || .  . || |_/ / | |' + '\n' +
              r'| | | |  _  || |\/| ||  __/  | |' + '\n' +
              r'\ \_/ / | | || |  | || |    _| |_' + '\n' +
              r' \___/\_| |_/\_|  |_/\_|    \___/ ', 'red'))
print('OhmPi start')
print('Version:', VERSION)
platform, on_pi = OhmPi.get_platform()
if on_pi:
    print(colored(f'Running on {platform} platform', 'green'))
    # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
    #       and emit a warning otherwise
    if not arm64_imports:
        print(colored(f'Warning: Required packages are missing.\n'
                      f'Please run . env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
    print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))

current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))

# for testing
if __name__ == "__main__":
    ohmpi = OhmPi(config='ohmpi_param.json')
    ohmpi.measure()
    time.sleep(4)
    ohmpi.stop()