Newer
Older

Guillaume Blanchy
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Update March 2022
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO).
"""
import os
import io
import json
import numpy as np
import csv
import time
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
# from mqtt_setup import mqtt_client_setup
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
import board # noqa
import busio # noqa
import adafruit_tca9548a # noqa
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa
import digitalio # noqa
from digitalio import Direction # noqa
from gpiozero import CPUTemperature # noqa
arm64_imports = True
except ImportError as error:
print(colored(f'Import error: {error}', 'yellow'))
arm64_imports = False
except Exception as error:
print(colored(f'Unexpected error: {error}', 'red'))
exit()
class OhmPi(object):
"""Create the main OhmPi object.
Parameters
----------
config : str, optional
Path to the .json configuration file.
sequence : str, optional
Path to the .txt where the sequence is read. By default, a 1 quadrupole
sequence: 1, 2, 3, 4 is used.
"""
def __init__(self, config=None, sequence=None, mqtt=True, on_pi=None):
# flags and attributes
if on_pi is None:
_, on_pi = OhmPi.get_platform()
self.sequence = sequence
self.on_pi = on_pi # True if run from the RaspberryPi with the hardware, otherwise False for random data
self.status = 'idle' # either running or idle
self.run = False # flag is True when measuring
self.thread = None # contains the handle for the thread taking the measurement
self.path = 'data/' # where to save the .csv
# set loggers
config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt) # TODO: add SOH
self.data_logger = config_data_logger
self.exec_logger = config_exec_logger
self.soh_logger = None
print('Loggers:')
print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue'))
print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue'))
print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue'))
# read in hardware parameters (settings.py)
self._read_hardware_parameters()
# default acquisition parameters
self.pardict = {
'injection_duration': 0.2,
'nbr_meas': 100,
'sequence_delay': 1,
'nb_stack': 1,
'export_path': 'data/measurement.csv'
}
# read in acquisition parameters
if config is not None:
self._read_acquisition_parameters(config)
self.exec_logger.debug('Initialized with configuration:' + str(self.pardict))
# read quadrupole sequence
if sequence is None:
self.sequence = np.array([[1, 2, 3, 4]])
else:
self.read_quad(sequence)
# connect to components on the OhmPi board
if self.on_pi:
# activation of I2C protocol
self.i2c = busio.I2C(board.SCL, board.SDA) # noqa
# I2C connexion to MCP23008, for current injection
self.mcp = MCP23008(self.i2c, address=0x20)
# ADS1115 for current measurement (AB)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
# ADS1115 for voltage measurement (MN)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
def _read_acquisition_parameters(self, config):
"""Read acquisition parameters.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
- nbr_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Parameters
----------
config : str
Path to the .json or dictionary.
"""
if isinstance(config, dict):
self.pardict.update(config)
else:
with open(config) as json_file:
dic = json.load(json_file)
self.pardict.update(dic)
self.exec_logger.debug('Acquisition parameters updated: ' + str(self.pardict))
def _read_hardware_parameters(self):
"""Read hardware parameters from settings.py.
"""
from config import OHMPI_CONFIG
self.id = OHMPI_CONFIG['id'] # ID of the OhmPi
self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm
self.Imax = OHMPI_CONFIG['Imax'] # maximum current
self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA')
self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V
self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ads.P3, measurement in V/V
# self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed
# self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed
self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack
self.version = OHMPI_CONFIG['version'] # hardware version
self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes
self.board_address = OHMPI_CONFIG['board_address']
self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
@staticmethod
def find_identical_in_line(quads):
"""Find quadrupole which where A and B are identical.
If A and B are connected to the same relay, the Pi burns (short-circuit).
Parameters
----------
quads : 1D or 2D array
List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
Returns
-------
output : 1D array of int
List of index of rows where A and B are identical.
"""
# TODO is this needed for M and N?
# if we have a 1D array (so only 1 quadrupole), make it 2D
if len(quads.shape) == 1:
quads = quads[None, :]
output = np.where(quads[:, 0] == quads[:, 1])[0]
# output = []
# if array_object.ndim == 1:
# temp = np.zeros(4)
# for i in range(len(array_object)):
# temp[i] = np.count_nonzero(array_object == array_object[i])
# if any(temp > 1):
# output.append(0)
# else:
# for i in range(len(array_object[:,1])):
# temp = np.zeros(len(array_object[1,:]))
# for j in range(len(array_object[1,:])):
# temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j])
# if any(temp > 1):
# output.append(i)
return output
@staticmethod
def get_platform():
"""Get platform name and check if it is a raspberry pi"""
platform = 'unknown'
on_pi = False
try:
with io.open('/sys/firmware/devicetree/base/model', 'r') as f:
platform = f.read().lower()
if 'raspberry pi' in platform:
on_pi = True
except FileNotFoundError:
pass
return platform, on_pi
def read_quad(self, filename):
"""Read quadrupole sequence from file.
Parameters
----------
filename : str
Path of the .csv or .txt file with A, B, M and N electrodes.
Electrode index start at 1.
Returns
-------
output : numpy.array
Array of shape (number quadrupoles * 4).
"""
output = np.loadtxt(filename, delimiter=" ", dtype=int) # load quadrupole file
# locate lines where the electrode index exceeds the maximum number of electrodes
test_index_elec = np.array(np.where(output > self.max_elec))
# locate lines where electrode A == electrode B
test_same_elec = self.find_identical_in_line(output)
# if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
if test_index_elec.size != 0:
for i in range(len(test_index_elec[0, :])):
self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
f'exceeds the maximum number of electrodes')
# sys.exit(1)
output = None
elif len(test_same_elec) != 0:
for i in range(len(test_same_elec)):
self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
# sys.exit(1)
output = None
if output is not None:
self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(output.shape[0]))
self.sequence = output
def switch_mux(self, electrode_nr, state, role):
"""Select the right channel for the multiplexer cascade for a given electrode.
Parameters
----------
electrode_nr : int
Electrode index to be switched on or off.
state : str
Either 'on' or 'off'.
role : str
Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
"""
if self.sequence.max() <= 4: # only 4 electrodes so no MUX
pass
else:
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role])
# find I2C address of the electrode and corresponding relay
# TODO from number of electrode, the below can be guessed
# considering that one MCP23017 can cover 16 electrodes
electrode_nr = electrode_nr - 1 # switch to 0 indexing
i2c_address = 7 - electrode_nr // 16 # quotient without rest of the division
relay_nr = electrode_nr - (electrode_nr // 16) * 16
relay_nr = relay_nr + 1 # switch back to 1 based indexing
# if electrode_nr < 17:
# i2c_address = 7
# relay_nr = electrode_nr
# elif 16 < electrode_nr < 33:
# i2c_address = 6
# relay_nr = electrode_nr - 16
# elif 32 < electrode_nr < 49:
# i2c_address = 5
# relay_nr = electrode_nr - 32
# elif 48 < electrode_nr < 65:
# i2c_address = 4
# relay_nr = electrode_nr - 48
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT
if state == 'on':
mcp2.get_pin(relay_nr - 1).value = True
else:
mcp2.get_pin(relay_nr - 1).value = False
self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}')
else:
self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')
def switch_mux_on(self, quadrupole):
""" Switch on multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
# another check to be sure A != B
if quadrupole[0] != quadrupole[1]:
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'on', roles[i])
else:
self.exec_logger.error('A == B -> short circuit risk detected!')
def switch_mux_off(self, quadrupole):
""" Switch off multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'off', roles[i])
def reset_mux(self):
"""Switch off all multiplexer relays."""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
for j in range(1, self.max_elec + 1):
self.switch_mux(j, 'off', roles[i])
self.exec_logger.debug('All MUX switched off.')
def gain_auto(self, channel):
""" Automatically set the gain on a channel
Parameters
----------
channel:
Returns
-------
float
"""
gain = 2 / 3
if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
gain = 2
elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
gain = 4
elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
gain = 8
elif abs(channel.voltage) < 0.256:
gain = 16
self.exec_logger.debug(f'Setting gain to {gain}')
return gain
def run_measurement(self, quad, nb_stack=None, injection_duration=None):
""" Do a 4 electrode measurement and measure transfer resistance obtained.
Parameters
----------
nb_stack : int, optional
Number of stacks.
injection_duration : int, optional
Injection time in seconds.
quad : list of int
Quadrupole to measure.
"""
# TODO here we can add the current_injected or voltage_injected in mA or mV
# check arguments
if nb_stack is None:
nb_stack = self.pardict['stack']
if injection_duration is None:
injection_duration = self.pardict['injection_duration']
start_time = time.time()
# inner variable initialization
injection_current = 0
sum_vmn = 0
sum_ps = 0
# injection courant and measure
pin0 = self.mcp.get_pin(0)
pin0.direction = Direction.OUTPUT
pin1 = self.mcp.get_pin(1)
pin1.direction = Direction.OUTPUT
pin0.value = False
pin1.value = False
self.exec_logger.debug('Starting measurement')
self.exec_logger.info('Waiting for data')
# FUNCTION AUTOGAIN
# ADS1115 for current measurement (AB)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
# ADS1115 for voltage measurement (MN)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
# try auto gain
pin1.value = True
pin0.value = False
time.sleep(injection_duration)
gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0, ads.P1))
pin0.value = False
pin1.value = False
print(gain_current)
print(gain_voltage)
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x48)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x49)
# TODO I don't get why 3 + 2*nb_stack - 1? why not just range(nb_stack)?
# or do we consider 1 stack = one full polarity? do we discard the first 3 readings?
for n in range(0, 3 + 2 * nb_stack - 1):
# current injection
if (n % 2) == 0:
pin1.value = True
pin0.value = False # current injection polarity nr1
else:
pin0.value = True
pin1.value = False # current injection nr2
start_delay = time.time() # stating measurement time
time.sleep(injection_duration) # delay depending on current injection duration
# measurement of current i and voltage u
# sampling for each stack at the end of the injection
meas = np.zeros((self.nb_samples, 3))
for k in range(0, self.nb_samples):
# reading current value on ADS channel A0
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
# reading voltage value on ADS channel A2
# meas[k, 2] = AnalogIn(self.ads_voltage, ads.P1).voltage * self.coef_p3 * 1000
# stop current injection
pin1.value = False
pin0.value = False
end_delay = time.time()
# take average from the samples per stack, then sum them all
# average for all stack is done outside the loop
injection_current = injection_current + (np.mean(meas[:, 0]))
vmn1 = np.mean(meas[:, 1]) - np.mean(meas[:, 2])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
# TODO get battery voltage and warn if battery is running low
end_calc = time.time()
# TODO I am not sure I understand the computation below
# wait twice the actual injection time between two injection
# so it's a 50% duty cycle right?
time.sleep(2 * (end_delay - start_delay) - (end_calc - start_delay))
# create a dictionary and compute averaged values from all stacks
d = {
"time": [datetime.now().isoformat()],
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": (end_delay - start_delay) * 1000,
"Vmn [mV]": [(sum_vmn / (3 + 2 * nb_stack - 1))],
"I [mA]": [(injection_current / (3 + 2 * nb_stack - 1))],
"R [ohm]": [(sum_vmn / (3 + 2 * nb_stack - 1) / (injection_current / (3 + 2 * nb_stack - 1)))],
"Ps [mV]": [(sum_ps / (3 + 2 * nb_stack - 1))],
"nbStack": [nb_stack],
"CPU temp [degC]": [CPUTemperature().temperature],
"Time [s]": [(-start_time + time.time())],
"Nb samples [-]": [self.nb_samples]
}
# round number to two decimal for nicer string output
output = [f'{k}\t' for k in d.keys()]
output = str(output)[:-1] + '\n'
for k in d.keys():
if isinstance(d[k], float):
val = np.round(d[k], 2)
else:
val = d[k]
output += f'{val}\t'
output = output[:-1]
self.exec_logger.debug(output)
time.sleep(1) # NOTE: why this?
return d
def rs_check(self):
""" Check contact resistance.
"""
# create custom sequence where MN == AB
nelec = self.sequence.max() # number of elec used in the sequence
quads = np.vstack([
np.arange(nelec - 1) + 1,
np.arange(nelec - 1) + 2,
np.arange(nelec - 1) + 1,
np.arange(nelec - 1) + 2
]).T
for i in range(0, quads.shape[0]):
quad = quads[i, :] # quadrupole
self.reset_mux()
self.switch_mux_on(quad)
pin0 = self.mcp.get_pin(0)
pin0.direction = Direction.OUTPUT
pin1 = self.mcp.get_pin(1)
pin1.direction = Direction.OUTPUT
pin0.value = False
pin1.value = False
print(quad)
# call the switch_mux function to switch to the right electrodes
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
# ADS1115 for voltage measurement (MN)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
pin1.value = True
pin0.value = False
time.sleep(0.2)
current = AnalogIn(self.ads_current, ads.P0).voltage / (50 * self.r_shunt)
voltage = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * 2.5
resistance = voltage / current
# print(B)
# print(A)
print(abs(round(resistance / 1000, 1)), "kOhm")
self.switch_mux_off(quad)
pin0.value = False
pin1.value = False
# # create backup TODO not good
# export_path = self.pardict['export_path']
# sequence = self.sequence.copy()
#
# # assign new value
# self.pardict['export_path'] = export_path.replace('.csv', '_rs.csv')
# self.sequence = quads
# print(self.sequence)
#
# # run the RS check
# self.log_exec('RS check (check contact resistance)', level='debug')
# self.measure()
#
# # restore
# self.pardict['export_path'] = export_path
# self.sequence = sequence
#
# # TODO if interrupted, we would need to restore the values
# # TODO or we offer the possiblity in 'run_measurement' to have rs_check each time?
@staticmethod
def append_and_save(filename, last_measurement):
"""Append and save last measurement dataframe.
Parameters
----------
filename : str
filename to save the last measurement dataframe
last_measurement : dict
Last measurement taken in the form of a python dictionary
"""
if os.path.isfile(filename):
# Load data file and append data to it
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=False)
else:
# create data file and add headers
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writeheader()
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=True)
def measure(self):
"""Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'.
"""
self.run = True
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
def func():
for g in range(0, self.pardict["nbr_meas"]): # for time-lapse monitoring
if self.run is False:
self.exec_logger.warning('Data acquisition interrupted')
break
t0 = time.time()
# create filename with timestamp
filename = self.pardict["export_path"].replace('.csv',
f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
self.exec_logger.debug(f'Saving to {filename}')
# make sure all multiplexer are off
self.reset_mux()
# measure all quadrupole of the sequence
for i in range(0, self.sequence.shape[0]):
quad = self.sequence[i, :] # quadrupole
if self.run is False:
break
# call the switch_mux function to switch to the right electrodes
self.switch_mux_on(quad)
# run a measurement
if self.on_pi:
current_measurement = self.run_measurement(quad, self.pardict["stack"],
self.pardict["injection_duration"])
else: # for testing, generate random data
current_measurement = {
'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]],
'R [ohm]': np.abs(np.random.randn(1))
}
# switch mux off
self.switch_mux_off(quad)
# log data to the data logger
self.data_logger.info(f'{current_measurement}')
# save data and print in a text file
self.append_and_save(filename, current_measurement)
self.exec_logger.debug('{:d}/{:d}'.format(i + 1, self.sequence.shape[0]))
# compute time needed to take measurement and subtract it from interval
# between two sequence run (= sequence_delay)
measuring_time = time.time() - t0
sleep_time = self.pardict["sequence_delay"] - measuring_time
if sleep_time < 0:
# it means that the measuring time took longer than the sequence delay
sleep_time = 0
self.exec_logger.warning('The measuring time is longer than the sequence delay. '
'Increase the sequence delay')
# sleeping time between sequence
if self.pardict["nbr_meas"] > 1:
time.sleep(sleep_time) # waiting for next measurement (time-lapse)
self.status = 'idle'
self.thread = threading.Thread(target=func)
self.thread.start()
def stop(self):
"""Stop the acquisition.
"""
self.run = False
if self.thread is not None:
self.thread.join()
self.exec_logger.debug(f'Status: {self.status}')
# mqtt_client, measurement_topic = mqtt_client_setup()
VERSION = '2.0.2'
print(colored(r' ________________________________' + '\n' +
r'| _ | | | || \/ || ___ \_ _|' + '\n' +
r'| | | | |_| || . . || |_/ / | |' + '\n' +
r'| | | | _ || |\/| || __/ | |' + '\n' +
r'\ \_/ / | | || | | || | _| |_' + '\n' +
r' \___/\_| |_/\_| |_/\_| \___/ ', 'red'))
print('OhmPi start')
print('Version:', VERSION)
platform, on_pi = OhmPi.get_platform()
if on_pi:
print(colored(f'Running on {platform} platform', 'green'))
# TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
# and emit a warning otherwise
if not arm64_imports:
print(colored(f'Warning: Required packages are missing.\n'
f'Please run . env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))
current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))
# for testing
if __name__ == "__main__":
ohmpi = OhmPi(config='ohmpi_param.json')
ohmpi.measure()
time.sleep(4)
ohmpi.stop()