Newer
Older
Olivier Kaufmann
committed
import importlib
import time
Olivier Kaufmann
committed
import numpy as np
try:
import matplotlib.pyplot as plt
except Exception:
pass
from OhmPi.logging_setup import create_stdout_logger
from OhmPi.config import HARDWARE_CONFIG
from threading import Thread, Event, Barrier
ctl_module = importlib.import_module(f'OhmPi.hardware_components.{HARDWARE_CONFIG["ctl"]["model"]}')
pwr_module = importlib.import_module(f'OhmPi.hardware_components.{HARDWARE_CONFIG["pwr"]["model"]}')
tx_module = importlib.import_module(f'OhmPi.hardware_components.{HARDWARE_CONFIG["tx"]["model"]}')
rx_module = importlib.import_module(f'OhmPi.hardware_components.{HARDWARE_CONFIG["rx"]["model"]}')
for mux_id, mux_config in HARDWARE_CONFIG['mux']['boards'].items():
mux_module = importlib.import_module(f'OhmPi.hardware_components.{mux_config["model"]}')
MUX_CONFIG[mux_id] = mux_module.MUX_CONFIG
MUX_CONFIG[mux_id].update(mux_config)
MUX_CONFIG[mux_id].update({'id': mux_id})
mux_boards.append(mux_id)
Olivier Kaufmann
committed
TX_CONFIG = tx_module.TX_CONFIG
RX_CONFIG = rx_module.RX_CONFIG
current_max = np.min([TX_CONFIG['current_max'], np.min([MUX_CONFIG[i].pop('current_max', np.inf) for i in mux_boards])])
voltage_max = np.min([TX_CONFIG['voltage_max'], np.min([MUX_CONFIG[i].pop('voltage_max', np.inf) for i in mux_boards])])
Olivier Kaufmann
committed
voltage_min = RX_CONFIG['voltage_min']
def elapsed_seconds(start_time):
lap = datetime.datetime.utcnow() - start_time
return lap.total_seconds()
Olivier Kaufmann
committed
class OhmPiHardware:
Olivier Kaufmann
committed
def __init__(self, **kwargs):
self.exec_logger = kwargs.pop('exec_logger', None)
if self.exec_logger is None:
self.exec_logger = create_stdout_logger('exec_hw')
self.data_logger = kwargs.pop('exec_logger', None)
if self.data_logger is None:
self.data_logger = create_stdout_logger('data_hw')
self.soh_logger = kwargs.pop('soh_logger', None)
if self.soh_logger is None:
self.soh_logger = create_stdout_logger('soh_hw')
self.tx_sync = Event()
self.ctl = kwargs.pop('ctl', ctl_module.Ctl(exec_logger=self.exec_logger,
data_logger=self.data_logger,
soh_logger=self.soh_logger))
self.rx = kwargs.pop('rx', rx_module.Rx(exec_logger=self.exec_logger,
data_logger=self.data_logger,
soh_logger=self.soh_logger,
ctl=self.ctl))
self.pwr = kwargs.pop('pwr', pwr_module.Pwr(exec_logger=self.exec_logger,
data_logger=self.data_logger,
soh_logger=self.soh_logger,
ctl=self.ctl))
self.tx = kwargs.pop('tx', tx_module.Tx(exec_logger=self.exec_logger,
data_logger=self.data_logger,
soh_logger=self.soh_logger,
ctl=self.ctl))
self._cabling = kwargs.pop('cabling', {})
self.mux_boards = kwargs.pop('mux', {'mux_1': mux_module.Mux(id='mux_1',
exec_logger=self.exec_logger,
data_logger=self.data_logger,
soh_logger=self.soh_logger,
self.mux_barrier = Barrier(len(self.mux_boards) + 1)
Olivier Kaufmann
committed
self._cabling={}
for _, mux in self.mux_boards.items():
mux.barrier = self.mux_barrier
update_dict(self._cabling, {k: (mux_id, k[0])})
self.readings = np.array([]) # time series of acquired data
self._start_time = None # time of the beginning of a readings acquisition
Olivier Kaufmann
committed
def _clear_values(self):
self.readings = np.array([])
def _gain_auto(self):
self.tx_sync.wait()
self.tx.adc_gain_auto()
self.rx.adc_gain_auto()
def _inject(self, polarity=1, inj_time=None):
self.tx_sync.set()
self.tx.voltage_pulse(length=inj_time, polarity=polarity)
self.tx_sync.clear()
self.mux_barrier = Barrier(len(self.mux_boards) + 1)
for mux in self.mux_boards:
mux.barrier = self.mux_barrier
@property
def pulses(self):
pulses = {}
for i in np.unique(self.readings[:,1]):
r = self.readings[self.readings[:, 1] == i, :]
assert np.all(np.isclose(r[:,2], r[0, 2])) # Polarity cannot change within a pulse
pulses.update({i: {'polarity': int(r[0, 2]), 'iab': r[:,3], 'vmn' : r[:,4]}}) # TODO: check how to generalize in case of multi-channel RX
return pulses
Olivier Kaufmann
committed
def _read_values(self, sampling_rate, append=False): # noqa
if not append:
self._clear_values()
_readings = []
else:
_readings = self.readings.tolist()
if not append or self._start_time is None:
self._start_time = datetime.datetime.utcnow()
while self.tx_sync.is_set():
lap = datetime.datetime.utcnow()
_readings.append([elapsed_seconds(self._start_time), self._pulse, self.tx.polarity, self.tx.current,
self.rx.voltage])
sleep_time = self._start_time + datetime.timedelta(seconds = sample * sampling_rate / 1000) - lap
time.sleep(np.max([0, sleep_time.total_seconds()]))
def sp(self): # TODO: use a time window within pulses
if self.readings.shape == (0,) or len(self.readings[self.readings[:,2]==1, :]) < 1 or len(self.readings[self.readings[:,2]==-1, :]) < 1:
self.exec_logger.warning('Unable to compute sp: readings should at least contain one positive and one negative pulse')
return 0.
else:
n_pulses = int(np.max(self.readings[:, 1]))
polarity = np.array([np.median(self.readings[self.readings[:, 1]==i, 2]) for i in range(n_pulses + 1)])
mean_vmn = []
mean_iab = []
for i in range(n_pulses + 1):
mean_vmn.append(np.mean(self.readings[self.readings[:, 1]==i, 4]))
mean_iab.append(np.mean(self.readings[self.readings[:, 1]==i, 3]))
mean_vmn = np.array(mean_vmn)
mean_iab = np.array(mean_iab)
sp = np.mean(mean_vmn[np.ix_(polarity==1)] - mean_vmn[np.ix_(polarity==-1)]) / 2
return sp
Olivier Kaufmann
committed
def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5,
vab_max=voltage_max, vmn_min=voltage_min):
Olivier Kaufmann
committed
"""Estimates best Tx voltage based on different strategies.
At first a half-cycle is made for a short duration with a fixed
known voltage. This gives us Iab and Rab. We also measure Vmn.
A constant c = vmn/iab is computed (only depends on geometric
factor and ground resistivity, that doesn't change during a
quadrupole). Then depending on the strategy, we compute which
vab to inject to reach the minimum/maximum Iab current or
min/max Vmn.
This function also compute the polarity on Vmn (on which pin
of the ADS1115 we need to measure Vmn to get the positive value).
Parameters
----------
best_tx_injtime : float, optional
Time in milliseconds for the half-cycle used to compute Rab.
strategy : str, optional
Either:
Olivier Kaufmann
committed
- vmax : compute Vab to reach a maximum Iab without exceeding vab_max
- vmin : compute Vab to reach at least vmn_min
Olivier Kaufmann
committed
- constant : apply given Vab
tx_volt : float, optional
Voltage to apply for guessing the best voltage. 5 V applied
by default. If strategy "constant" is chosen, constant voltage
to applied is "tx_volt".
Olivier Kaufmann
committed
vab_max : float, optional
Maximum injection voltage to apply to tx (used by all strategies)
vmn_min : float, optional
Minimum voltage target for rx (used by vmin strategy)
Olivier Kaufmann
committed
Returns
-------
vab : float
Proposed Vab according to the given strategy.
Olivier Kaufmann
committed
polarity:
Polarity of VMN relative to polarity of VAB
rab : float
Resistance between injection electrodes
Olivier Kaufmann
committed
"""
Olivier Kaufmann
committed
vab_max = np.abs(vab_max)
vmn_min = np.abs(vmn_min)
vab = np.min([np.abs(tx_volt), vab_max])
Olivier Kaufmann
committed
self.tx.turn_on()
if self.rx.sampling_rate*1000 > best_tx_injtime:
sampling_rate = best_tx_injtime # TODO: check this...
else:
sampling_rate = self.tx.sampling_rate
self._vab_pulse(vab=vab, length=best_tx_injtime, sampling_rate=sampling_rate) # TODO: use a square wave pulse?
vmn = np.mean(self.readings[:,4])
iab = np.mean(self.readings[:,3])
# if np.abs(vmn) is too small (smaller than voltage_min), strategy is not constant and vab < vab_max ,
# then we could call _compute_tx_volt with a tx_volt increased to np.min([vab_max, tx_volt*2.]) for example
Olivier Kaufmann
committed
if strategy == 'vmax':
Olivier Kaufmann
committed
# implement different strategies
Olivier Kaufmann
committed
if vab < vab_max and iab < current_max :
vab = vab * np.min([0.9 * vab_max / vab, 0.9 * current_max / iab]) # TODO: check if setting at 90% of max as a safety margin is OK
self.tx.exec_logger.debug(f'vmax strategy: setting VAB to {vab} V.')
Olivier Kaufmann
committed
elif strategy == 'vmin':
if vab <= vab_max and iab < current_max:
Olivier Kaufmann
committed
vab = vab * np.min([0.9 * vab_max / vab, vmn_min / np.abs(vmn), 0.9 * current_max / iab]) # TODO: check if setting at 90% of max as a safety margin is OK
elif strategy != 'constant':
self.tx.exec_logger.warning(f'Unknown strategy {strategy} for setting VAB! Using {vab} V')
else:
self.tx.exec_logger.debug(f'Constant strategy for setting VAB, using {vab} V')
Olivier Kaufmann
committed
self.tx.turn_off()
Olivier Kaufmann
committed
rab = (np.abs(vab) * 1000.) / iab
Olivier Kaufmann
committed
self.exec_logger.debug(f'RAB = {rab:.2f} Ohms')
Olivier Kaufmann
committed
if vmn < 0:
polarity = -1 # TODO: check if we really need to return polarity
else:
polarity = 1
Olivier Kaufmann
committed
return vab, polarity, rab
def _plot_readings(self):
# Plot graphs
fig, ax = plt.subplots(nrows=2, sharex=True)
ax[0].plot(self.readings[:, 0], self.readings[:, 3], '-r', marker='.', label='iab')
ax[0].set_ylabel('Iab [mA]')
ax[1].plot(self.readings[:, 0], self.readings[:, 2] * self.readings[:, 4], '-b', marker='.', label='vmn')
ax[1].set_ylabel('Vmn [mV]')
fig.legend()
plt.show()
def vab_square_wave(self, vab, cycle_length, sampling_rate=None, cycles=3, polarity=1, append=False):
self._vab_pulses(vab, lengths, sampling_rate, append=append)
Olivier Kaufmann
committed
def _vab_pulse(self, vab, length, sampling_rate=None, polarity=1, append=False):
Olivier Kaufmann
committed
""" Gets VMN and IAB from a single voltage pulse
"""
Olivier Kaufmann
committed
if sampling_rate is None:
sampling_rate = RX_CONFIG['sampling_rate']
if self.tx.pwr.voltage_adjustable:
self.tx.pwr.voltage = vab
# set gains automatically
gain_auto = Thread(target=self._gain_auto)
injection = Thread(target=self._inject, kwargs={'inj_time': 0.2, 'polarity': polarity})
gain_auto.start()
injection.start()
# reads current and voltage during the pulse
injection = Thread(target=self._inject, kwargs={'inj_time':length, 'polarity': polarity})
Olivier Kaufmann
committed
readings = Thread(target=self._read_values, kwargs={'sampling_rate': sampling_rate, 'append': append})
readings.start()
injection.start()
readings.join()
injection.join()
def _vab_pulses(self, vab, lengths, sampling_rate, polarities=None, append=False):
Olivier Kaufmann
committed
n_pulses = len(lengths)
if sampling_rate is None:
sampling_rate = RX_CONFIG['sampling_rate']
if polarities is not None:
assert len(polarities)==n_pulses
else:
polarities = [-self.tx.polarity * np.heaviside(i % 2, -1.) for i in range(n_pulses)]
Olivier Kaufmann
committed
for i in range(n_pulses):
self._vab_pulse(self, length=lengths[i], sampling_rate=sampling_rate, polarity=polarities[i], append=True)
def switch_mux(self, electrodes, roles=None, state='off'):
"""Switches on multiplexer relays for given quadrupole.
Parameters
----------
electrodes : list
List of integers representing the electrode ids.
roles : list, optional
List of roles of electrodes, optional
state : str, optional
Either 'on' or 'off'.
"""
if roles is None:
roles = ['A', 'B', 'M', 'N']
if len(electrodes) == len(roles):
# TODO: Check that we don't set incompatible roles to the same electrode
elec_dict = {i: [] for i in roles}
mux_workers = []
for idx, elec in enumerate(electrodes):
elec_dict[roles[idx]].append(elec)
try:
mux = self._cabling[(elec, roles[idx])][0]
if mux not in mux_workers:
mux_workers.append(mux)
except KeyError:
self.exec_logger.debug(f'Unable to switch {state} ({elec}, {roles[idx]}): not in cabling and will be ignored...')
status = False
if status:
mux_workers = list(set(mux_workers))
b = Barrier(len(mux_workers)+1)
self.mux_barrier = b
for idx, mux in enumerate(mux_workers):
# Create a new thread to perform some work
self.mux_boards[mux].barrier = b
mux_workers[idx] = Thread(target=self.mux_boards[mux].switch, kwargs={'elec_dict': elec_dict, 'state': state})
mux_workers[idx].start()
self.mux_barrier.wait()
for mux_worker in mux_workers:
mux_worker.join()
else:
self.exec_logger.error(
f'Unable to switch {state} electrodes: number of electrodes and number of roles do not match!')
status = False
return status
Olivier Kaufmann
committed
def test_mux(self, channel=None, activation_time=1.0):
"""Interactive method to test the multiplexer.
Parameters
----------
channel : tuple, optional
(electrode_nr, role) to test.
Olivier Kaufmann
committed
activation_time : float, optional
Time in seconds during which the relays are activated.
try:
electrodes = [int(channel[0])]
roles = [channel[1]]
except Exception as e:
self.exec_logger.error(f'Unable to parse channel: {e}')
return
Olivier Kaufmann
committed
self.switch_mux(electrodes,roles,state='on')
time.sleep(activation_time)
self.switch_mux(electrodes,roles, state='off')
self.exec_logger.info(f'Testing electrode {c[0]} with role {c[1]}.')
self.switch_mux(electrodes=[c[0]],roles=[c[1]],state='on')
Olivier Kaufmann
committed
time.sleep(activation_time)
self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='off')
Olivier Kaufmann
committed
self.exec_logger.info('Test finished.')
def reset_mux(self):
"""Switches off all multiplexer relays.
"""
self.exec_logger.debug('Resetting all mux boards ...')
for mux_id, mux in self.mux_boards.items(): # noqa
self.exec_logger.debug(f'Resetting {mux_id}.')