Ohmpi.py 10.04 KiB
"""
created on January 6, 2020
Update December 2021
Ohmpi.py is a program to control a low-cost and open hardward resistivity meter OhmPi that has been developed by Rémi CLEMENT(INRAE),Vivien DUBOIS(INRAE),Hélène GUYARD(IGE), Nicolas FORQUET (INRAE), and Yannick FARGIER (IFSTTAR).
"""

print('\033[1m'+'\033[31m'+' ________________________________')
print('|  _  | | | ||  \/  || ___ \_   _|')
print('| | | | |_| || .  . || |_/ / | |' ) 
print('| | | |  _  || |\/| ||  __/  | |')  
print('\ \_/ / | | || |  | || |    _| |_') 
print(' \___/\_| |_/\_|  |_/\_|    \___/ ')
print('\033[0m')
print('OHMPI start' )
print('Vers: 1.50')
print('Import library')

import RPi.GPIO as GPIO
import time , board, busio, numpy, os, sys, json, glob, statistics
from datetime import datetime
import adafruit_ads1x15.ads1115 as ADS
from adafruit_ads1x15.analog_in import AnalogIn
import pandas as pd
import os.path
from gpiozero import CPUTemperature
"""
display start time
"""
current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))

"""
hardware parameters
"""
R_ref = 50.20# reference resistance value in ohm
coef_p0 = 2.47 # slope for current conversion for ADS.P0, measurement in V/V
coef_p1 = 2.47# slope for current conversion for ADS.P1, measurement in V/V
coef_p2 = 2.4748 # slope for current conversion for ADS.P2, measurement in V/V
coef_p3 = 2.4748 # slope for current conversion for ADS.P3, measurement in V/V
export_path = "/home/pi/Desktop/measurement.csv"
base_dir = '/sys/bus/w1/devices/'
device_folder = glob.glob(base_dir + '28*')[0]
device_file = device_folder + '/w1_slave'

# GPIO initialization
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(7, GPIO.OUT)
GPIO.setup(8, GPIO.OUT)

integer=30
meas=numpy.zeros((4,integer))

"""
import parameters
"""
with open('ohmpi_param.json') as json_file:
    pardict = json.load(json_file)

i2c = busio.I2C(board.SCL, board.SDA) # I2C protocol setup
ads = ADS.ADS1115(i2c, gain=2/3,data_rate=860) # I2C communication setup

"""
functions
"""
# function swtich_mux select the right channels for the multiplexer cascade for electrodes A, B, M and N.
def switch_mux(quadripole):
    path2elec = numpy.loadtxt("path2elec.txt", delimiter=" ", dtype=bool)
    quadmux = numpy.loadtxt("quadmux.txt", delimiter=" ", dtype=int)
    for i in range(0,4):
        for j in range(0,5) :
             GPIO.output(int(quadmux[i,j]), bool(path2elec[quadripole[i]-1,j]))

# function to find rows with identical values in different columns
def find_identical_in_line(array_object):
    output = []
    if array_object.ndim == 1:
        temp = numpy.zeros(4)
        for i in range(len(array_object)):
            temp[i] = numpy.count_nonzero(array_object == array_object[i])
        if any(temp > 1):
            output.append(0)
    else:
        for i in range(len(array_object[:,1])):
            temp = numpy.zeros(len(array_object[1,:]))
            for j in range(len(array_object[1,:])):
                temp[j] = numpy.count_nonzero(array_object[i,:] == array_object[i,j])
            if any(temp > 1):
                output.append(i)
    return output

def gain_auto(channel):
    gain=2/3
    if ((abs(channel.voltage)<2.040) and (abs(channel.voltage)>=1.023)):
        gain=2
    elif ((abs(channel.voltage)<1.023) and (abs(channel.voltage)>=0.508)):
        gain=4
    elif ((abs(channel.voltage)<0.508) and (abs(channel.voltage)>=0.250)):
        gain=8
    elif abs(channel.voltage)<0.250:
        gain=16
    #print(gain)
    return gain 


# read quadripole file and apply tests
def read_quad(filename, nb_elec):
    output = numpy.loadtxt(filename, delimiter=" ",dtype=int) # load quadripole file
    # locate lines where the electrode index exceeds the maximum number of electrodes
    test_index_elec = numpy.array(numpy.where(output > 32))
    # locate lines where an electrode is referred twice
    test_same_elec = find_identical_in_line(output)
    # if statement with exit cases (rajouter un else if pour le deuxième cas du ticket #2)
    if test_index_elec.size != 0:
        for i in range(len(test_index_elec[0,:])):
            print("Error: An electrode index at line "+ str(test_index_elec[0,i]+1)+" exceeds the maximum number of electrodes")
        sys.exit(1)
    elif len(test_same_elec) != 0:
        for i in range(len(test_same_elec)):
            print("Error: An electrode index is used twice at line " + str(test_same_elec[i]+1))
        sys.exit(1)
    else:
        return output
       
def read_temp():
    f = open(device_file, 'r')
    lines = f.readlines()
    f.close()
    while lines[0].strip()[-3:] != 'YES':
        time.sleep(0.2)
        lines = read_temp_raw()
    equals_pos = lines[1].find('t=')
    if equals_pos != -1:
        temp_string = lines[1][equals_pos+2:]
        temp_c = float(temp_string) / 1000.0
        
        return temp_c
# perform a measurement
def run_measurement(nb_stack, injection_deltat, Rref, coefp0, coefp1, coefp2, coefp3, elec_array):
    
#     print('Enter contact resistance:')
#     Rc = float(input())
#     print('Enter soil resistance:')
#     Rsoil = float(input())
    
    start_time = time.time()
    # inner variable initialization
    sum_I=0
    sum_Vmn=0
    sum_Ps=0
    # injection courant and measure
    t_gain=[0,0]
    for n in range(0,3+2*nb_stack-1) :        
        # current injection
        
        if (n % 2) == 0:
            GPIO.output(7, GPIO.HIGH) # polarity n°1        
        else:
            GPIO.output(7, GPIO.LOW) # polarity n°2
        GPIO.output(8, GPIO.HIGH) # current injection
        time.sleep(injection_deltat) # delay depending on current injection duration
        if n==0:
            ads = ADS.ADS1115(i2c, gain=2/3,data_rate=860)
            Tx=AnalogIn(ads,ADS.P0).voltage
            Tab=AnalogIn(ads,ADS.P1).voltage
            t_gain=[gain_auto(AnalogIn(ads,ADS.P0,ADS.P1)),gain_auto(AnalogIn(ads,ADS.P2,ADS.P3))]
            
            print(t_gain)
            ads = ADS.ADS1115(i2c, gain=t_gain[0],data_rate=860)
           
        for k in range(0,integer):
            ads = ADS.ADS1115(i2c, gain=t_gain[0],data_rate=860)
            #ads = ADS.ADS1115(i2c, gain=2/3,data_rate=860)
            meas[0,k] = AnalogIn(ads,ADS.P0,ADS.P1).voltage# reading current value on ADS channel A0
            ads = ADS.ADS1115(i2c, gain=t_gain[1],data_rate=860)
            #ads = ADS.ADS1115(i2c, gain=2/3,data_rate=860)
            meas[2,k] = AnalogIn(ads,ADS.P2,ADS.P3).voltage # reading voltage value on ADS channel A2
        GPIO.output(8, GPIO.LOW)# stop current injection
        startdelay=time.time()
   
       
#         std=statistics.stdev(meas[0,:])
#         mean=statistics.mean(meas[0,:])
#         print( mean, std)

        sum_I=sum_I+numpy.mean(meas[0,:]) * ((coefp0+coefp1)/2)/Rref
        print(sum_I*Rref)
        Vmn1= numpy.mean(meas[2,:]) * ((coefp2+coefp3)/2)
        if (n % 2) == 0:
            sum_Vmn=sum_Vmn-Vmn1
            sum_Ps=sum_Ps+Vmn1
        else:
            sum_Vmn=sum_Vmn+Vmn1
            sum_Ps=sum_Ps+Vmn1
        time.sleep(injection_deltat - ((time.time() - startdelay) % injection_deltat))
    # return averaged values
    cpu= CPUTemperature()
    output = pd.DataFrame({
        "time":[datetime.now()],
        "A":elec_array[0],
        "B":elec_array[1],
        "M":elec_array[2],
        "N":elec_array[3],
        "Vmn [mV]":[(sum_Vmn/(3+2*nb_stack-1))*1000],
        "I [mA]":[(sum_I/(3+2*nb_stack-1))*1000],
        "R [ohm]":[( (sum_Vmn/(3+2*nb_stack-1)/(sum_I/(3+2*nb_stack-1))))],
        "Rab [Ohm]":[(Tab*2.47)/(sum_I/(3+2*nb_stack-1))],
        "Tx [V]":[Tx*2.47],              
        "Ps [mV]":[(sum_Ps/(3+2*nb_stack-1))*1000],
        "nbStack":[nb_stack],
        "CPU temp [°C]":[cpu.temperature],
        "Hardware temp [°C]":[read_temp()],
        "Time [S]":[(-start_time+time.time())]
#         "Rcontact[ohm]":[Rc],
#         "Rsoil[ohm]":[Rsoil],
#         "Rab_theory [Ohm]":[(Rc*2+Rsoil)]
     
     
      # Dead time equivalent to the duration of the current injection pulse   
    })
    output=output.round(2)
    print(output.to_string())
    return output

# save data
def append_and_save(path, last_measurement):
    
    if os.path.isfile(path):
        # Load data file and append data to it
        with open(path, 'a') as f:
             last_measurement.to_csv(f, header=False)
    else:
        # create data file and add headers
        with open(path, 'a') as f:
             last_measurement.to_csv(f, header=True)

"""
Initialization of GPIO channels
"""                    
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

"""
Initialization of multiplexer channels
"""
# pinList = [12,16,20,21,26,18,23,24,25,19,6,13,4,17,27,22,10,9,11,5] # List of GPIOs enabled for relay cards (electrodes)
# for i in pinList:
#     GPIO.setup(i, GPIO.OUT)
#     GPIO.output(i, GPIO.HIGH)


"""
Main loop
"""
N=read_quad("ABMN.txt",pardict.get("nb_electrodes")) # load quadripole file

if N.ndim == 1:
    N = N.reshape(1, 4)

for g in range(0,pardict.get("nbr_meas")): # for time-lapse monitoring

    for i in range(0,N.shape[0]): # loop over quadripoles
        # call the switch_mux function to switch to the right electrodes
#         switch_mux(N[i,])

        # run a measurement
        current_measurement = run_measurement(pardict.get("stack"), pardict.get("injection_duration"), R_ref, coef_p0, coef_p1, coef_p2, coef_p3, N[i,])

        # save data and print in a text file
        append_and_save(pardict.get("export_path"), current_measurement)

        # reset multiplexer channels
#         GPIO.output(12, GPIO.HIGH); GPIO.output(16, GPIO.HIGH); GPIO.output(20, GPIO.HIGH); GPIO.output(21, GPIO.HIGH); GPIO.output(26, GPIO.HIGH)
#         GPIO.output(18, GPIO.HIGH); GPIO.output(23, GPIO.HIGH); GPIO.output(24, GPIO.HIGH); GPIO.output(25, GPIO.HIGH); GPIO.output(19, GPIO.HIGH)
#         GPIO.output(6, GPIO.HIGH); GPIO.output(13, GPIO.HIGH); GPIO.output(4, GPIO.HIGH); GPIO.output(17, GPIO.HIGH); GPIO.output(27, GPIO.HIGH)
#         GPIO.output(22, GPIO.HIGH); GPIO.output(10, GPIO.HIGH); GPIO.output(9, GPIO.HIGH); GPIO.output(11, GPIO.HIGH); GPIO.output(5, GPIO.HIGH)

    time.sleep(pardict.get("sequence_delay")) #waiting next measurement (time-lapse)